The volume of the gas is 180.26 L, if there are 63.5 mol of an ideal gas at 9.11 atm at 42.80 °C.
Applying the ideal gas law PV= nRT
After rearranging the aforementioned expression, the volume might then be found as: V= n R T/ P.
Consequently, V= 63.5 mol, 0.0821, 315 K, and 9.11 atm equal 180.26 L.
<h3>How is the ideal gas equation defined?</h3>
The ideal gas equation is PV = nRT. In this equation, P denotes the ideal gas's pressure, V its volume, n its total amount, expressed in moles, and R its resistance for the universal gas constant, and T for temperature.
To know more about Ideal gas, visit-
brainly.com/question/8711877
#SPJ13
D.) It cannot be broken down into a simple substance through chemical means...
The answer would have to be letter b. Energy
After alpha decay (234,90) remain from it
The answer is 4 Newton
force = mass x acceleration
F= 2 kg x 2.0 <span>m<span>s2</span></span>
= 4 Newton