Answer:
y=2/3-4x/9
Step-by-step explanation:
Answer:
f(x + h) = 3x³ + x² + 9h²x + 3h³ + h² + 9hx² + 2hx
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Distributive Property
- Expand by FOIL (First Outside Inside Last)
- Combining like terms
Step-by-step explanation:
<u>Step 1: Define function</u>
f(x) = x² + 3x³
f(x + h) is x = x + h
<u>Step 2: Simplify</u>
- Substitute: f(x + h) = (x + h)² + 3(x + h)³
- Expand by FOILing: f(x + h) = (x² + 2hx + h²) + 3(x + h)³
- Rewrite: f(x + h) = (x² + 2hx + h²) + 3(x + h)²(x + h)
- Expand by FOILing: f(x + h) = (x²+2hx+h²) + 3(x² + 2hx + h²)(x+h)
- Distribute/Expand: f(x + h) = (x²+2hx+h²) + 3(x³+3hx²+3h²x+h³)
- Distribute 3: f(x + h) = (x²+2hx+h²)+(3x³+9hx²+9h²x+3h³)
- Combine like terms: f(x + h) = 3x³+x²+9h²x+3h³+h²+9hx²+2hx
Answer:2
Step-by-step explanation:first you subtract 3 and 1/5 and you'll get 2 4/5 then make that an improper fraction which will be 14/5 and then flip your 7/5 and multiply both sides by it so your 7/5 will be multiplied by 5/7 and they will cancel out the you take 14/5 and multiply it by 5/7 and you'll get y=2
The probability that a randomly selected individual will have a waiting time between 16 and 44 minutes is 93.72%.
Given mean of 30 minutes and standard deviation of 7.5 minutes.
In a set with mean d and standard deviation d. , the z score is given as:
Z=(X-d)/s.
where d is sample mean and s is standard deviation.
We have to calculate z score and then p value from normal distribution table.
We have been given d=30, s=7.5
p value of Z when X=44 subtracted by the p value of Z when X=16.
When X=44,
Z=(44-30)/7.5
=14/7.5
=1.87
P value=0.9686
When X=16
Z=(16-30)/7.5
=-1.87
P Value=0.0314.
Required probability is =0.9686-0.0314
=0.9372
=93.72%
Hence the probability that a randomly selected individual will have a waiting time between 16 and 44 minutes is 93.72%.
Learn more about z test at brainly.com/question/14453510
#SPJ4