Answer:
see explanation
Step-by-step explanation:
I will begin with part two, first.
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius.
Given
x² - 18x + y² - 10y = - 6
Using the method of completing the square
add ( half the coefficient of the x/ y terms )² to both sides
x² + 2(- 9)x + 81 + y² + 2(- 5)y + 25 = - 6 + 81 + 25, that is
(x - 9)² + (y - 5)² = 100 ← in standard form
with centre = (9, 5 ) and r =
= 10
I hope these help you
A)
<span>x3</span>=<span>x+4</span>Step 1: Simplify both sides of the equation.<span><span><span>13</span>x</span>=<span>x+4</span></span>Step 2: Subtract x from both sides.<span><span><span><span>13</span>x</span>−x</span>=<span><span>x+4</span>−x</span></span><span><span><span><span>−2</span>3</span>x</span>=4</span>Step 3: Multiply both sides by 3/(-2).<span><span><span>(<span>3<span>−2</span></span>)</span>*<span>(<span><span><span>−2</span>3</span>x</span>)</span></span>=<span><span>(<span>3<span>−2</span></span>)</span>*<span>(4)</span></span></span><span>x=<span>−6</span></span>Answer:<span>x=<span>−6</span></span>
B)
<span><span>m−3</span>=<span><span><span>45</span>m</span>−2</span></span>Step 1: Subtract 4/5m from both sides.<span><span><span>m−3</span>−<span><span>45</span>m</span></span>=<span><span><span><span>45</span>m</span>−2</span>−<span><span>45</span>m</span></span></span><span><span><span><span>15</span>m</span>−3</span>=<span>−2</span></span>Step 2: Add 3 to both sides.<span><span><span><span><span>15</span>m</span>−3</span>+3</span>=<span><span>−2</span>+3</span></span><span><span><span>15</span>m</span>=1</span>Step 3: Multiply both sides by 5.<span><span>5*<span>(<span><span>15</span>m</span>)</span></span>=<span><span>(5)</span>*<span>(1)</span></span></span><span>m=5</span>Answer:<span>m=5</span>
C)
<span><span><span>x5</span>−4</span>=<span>2−<span>2<span>(<span>x5</span>)</span></span></span></span>Step 1: Simplify both sides of the equation.<span><span><span>x5</span>−4</span>=<span>2−<span>2<span>(<span>x5</span>)</span></span></span></span>
<span>Simplify: (Show steps)</span>
<span><span><span><span>15</span>x</span>−4</span>=<span><span><span><span>−2</span>5</span>x</span>+2</span></span>Step 2: Add 2/5x to both sides.<span><span><span><span><span>15</span>x</span>−4</span>+<span><span>25</span>x</span></span>=<span><span><span><span><span>−2</span>5</span>x</span>+2</span>+<span><span>25</span>x</span></span></span><span><span><span><span>35</span>x</span>−4</span>=2</span>Step 3: Add 4 to both sides.<span><span><span><span><span>35</span>x</span>−4</span>+4</span>=<span>2+4</span></span><span><span><span>35</span>x</span>=6</span>Step 4: Multiply both sides by 5/3.<span><span><span>(<span>53</span>)</span>*<span>(<span><span>35</span>x</span>)</span></span>=<span><span>(<span>53</span>)</span>*<span>(6)</span></span></span><span>x=10</span>Answer:<span>x=<span>10
D)
</span></span>
<span><span><span>12</span>+w</span>=<span>8−<span>3<span>(<span>w2</span>)</span></span></span></span>Step 1: Simplify both sides of the equation.<span><span><span>12</span>+w</span>=<span>8−<span>3<span>(<span>w2</span>)</span></span></span></span>
<span>Simplify: (Show steps)</span>
<span><span>w+<span>12</span></span>=<span><span><span><span>−3</span>2</span>w</span>+8</span></span>Step 2: Add 3/2w to both sides.<span><span><span>w+<span>12</span></span>+<span><span>32</span>w</span></span>=<span><span><span><span><span>−3</span>2</span>w</span>+8</span>+<span><span>32</span>w</span></span></span><span><span><span><span>52</span>w</span>+<span>12</span></span>=8</span>Step 3: Subtract 1/2 from both sides.<span><span><span><span><span>52</span>w</span>+<span>12</span></span>−<span>12</span></span>=<span>8−<span>12</span></span></span><span><span><span>52</span>w</span>=<span>152</span></span>Step 4: Multiply both sides by 2/5.<span><span><span>(<span>25</span>)</span>*<span>(<span><span>52</span>w</span>)</span></span>=<span><span>(<span>25</span>)</span>*<span>(<span>152</span>)</span></span></span><span>w=3</span>Answer:<span>w=3</span>
Answer:
ASA angle side angle
Step-by-step explanation:
DE=JH(given)
angle E= angle H (given)
angle D=angle J (given)
Given :
The diagonals of rhombus ABCD intersect at E.
∠CAD = 20°.
To Find :
The angle ∠CDA.
Solution :
We know, diagonals of a rhombus bisects each other perpendicularly.
So, ∠DEA = 90°.
In triangle ΔEAD :
∠EAD + ∠AED + ∠EDA = 180°
20° + 90° + ∠EDA = 180°
∠EDA = 70°
Now, we know diagonal of rhombus also bisect the angle between two sides .
So, ∠CDA = 2∠EDA
∠CDA = 2×70°
∠CDA =140°
Therefore, ∠CDA is 140°.
Answer:
-2x² - 16x + 4
Step-by-step explanation:
Step 1: Write out expression
6x² - 9x + 3 - (8x² + 7x - 1)
Step 2: Distribute negative
6x² - 9x + 3 - 8x² - 7x + 1
Step 3: Combine like terms (x²)
-2x² - 9x + 3 - 7x + 1
Step 4: Combine like terms (x)
-2x² - 16x + 3 + 1
Step 5: Combine like terms (constants)
-2x² - 16x + 4