
<u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u>
- <u>The </u><u>sum </u><u>of </u><u>2</u><u> </u><u>numbers </u><u>is </u><u>equal </u><u>to </u><u>1</u><u>1</u><u> </u>
- <u>The </u><u>difference </u><u>between </u><u>two </u><u>numbers </u><u>is </u><u>1</u><u>9</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y</u><u>. </u>

Let the two numbers be x and y
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>


<u>Solving </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>


<u>Subsituting </u><u>eq(</u><u>3</u><u> </u><u>)</u><u> </u><u>in </u><u>eq</u><u>(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>









<u>Now</u><u>, </u><u> </u><u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>3</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>




Hence, The value of x and y are 15 and (-4) .
Answer:
a = -36/7
Step-by-step explanation:
55 + 7a = 19
(55 - 55) + 7a = (19 - 55)
7a = -36
7a/7 = -36/7
a = -36/7 the fraction can't be simplified any further
AE = AC = 4
m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)
m<BAE = 150 (= 60 + 90)
Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.
m<AEB + m<ABE + m<BAE = 180
m<AEB + m< ABE + 150 = 180
m<AEB + m<AEB = 30
m<AEB = 15
In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.
We can use the law of sines to find BE.
BE/(sin 150) = 4/(sin 15)
BE = (4 sin 150)/(sin 15)
BE = 7.727
The length could be 5 and width 3. That would equal 15
Answer:
B
Step-by-step explanation:
y = 32