Reactivity trends of halogen:
1) Melting point and boiling points increased down the
group
2) Colour becomes darker.
E.g. Fluorine (pale yellow)
Chlorine (yellowish-green)
Bromine (reddish-brown)
Iodine (purplish-black)
Astatine (black)
3) The reactivity decreases down the group.
Reactivity:
F > Cl > Br > I > At
Answer:
<h2>0.06 % </h2>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
error = 500 - 499.7 = 0.3
actual volume = 500 mL
We have

We have the final answer as
<h3>0.06 % </h3>
Hope this helps you
Answer:
Barium has the same number of valence electrons as calcium
Explanation:
Valence electrons is the number of electrons of an atom on the outer shell.
Those valence electrons can participate in the formation of a chemical bond (if the outer shell is not closed); in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.
<u>Calcium</u> is an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons.
<u>Sulfur </u>is part of a group 16, called the chalcogens or oxygen family. Those atoms have 6 valence electrons. They can form a bound with atoms of group 2 such as calcium, but do not have the same number of valence electrons.
<u>Potassium</u> is part of group 1, called the alkali metals or lithium family. Those atoms have 1 valence electrons. That means Potassium do not have the same number of valence electrons like calcium.
<u>Neon</u> is part of group 18, the noble gasses. Those are stable atoms, which means they have 8 valence electrons. They do not have the same number of valence electrons like Calcium.
<u>Barium</u> an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons. Calcium is also part of this group.
This means barium has the same number of valence electrons as Calcium.
Answer:
It is Likely to Be Sodium (Na) coz as You Down The group the reactivity increase
Answer:
35.9%
Explanation:
The percent volume of the coffee solution can be calculated as follows:
% volume of coffee solution = volume of coffee/total volume of coffee solution × 100
According to this question, a cup of coffee has 71 mL of coffee and 127 mL of water. This means that, the total volume of coffee solution is;
71mL + 127mL = 198mL
% volume = 71/198 × 100
= 0.359 × 100
Percent volume of coffee solution = 35.9%