The maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a. So, the correct option is (b).
Radiation pressure is the name for the force electromagnetic wave particles exert on a surface. It is inversely related to the wave's speed. Given data
Solar constant ( S ) = 1350W / m ^2
Now, the radiaton pressure is given by
P = 2 S /c
where c is the speed of the light
P = 2 × 1350 /3 × 10 ^8
P = 9 ×
P a
For a black surface, P = 4.5×
P a
Therefore, maximum radiation pressure exerted by sunlight in space on a flat black surface is 4.5 ×
P a
Learn more about radiation pressure here;
brainly.com/question/23972862
#SPJ4
A) Na2S
b) AlF3
c) O2
d) C6H12O6
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
Answer:
The 2 ml and 2.0 ml is the same thing.