Water (H 2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" [18][19] and the "solvent of life".[20] It is the most abundant substance on Earth[21] and the only common substance to exist as a solid, liquid, and gas on Earth's surface.[22] It is also the third most abundant molecule in the universe.[21]
Elements having same valence electrons are placed in <u>same group.</u>
Explanation:
First, let's start with some basic concepts of modern periodic table:
1. Modern Periodic table : It is the arrangement of element in the increasing order of their atomic numbers
The Modern periodic table is divided into Periods and groups .
Periods : These are the horizontal rows. There are seven periods in the periodic table . Period 1 has 2 element. Period two and three has 8 elements , period 4 and 5 have 18 elements and the period 6 and 7 have 32 elements.
Same period have same number of atomic orbital(Shell)
Group : The group is the vertical columns . There are 18 groups in the modern periodic table.Those element which have same group number will also have same number of electron in their outermost shell. The number of electron in the outermost shell determines the valency of the element.
So, elements showing same valency are placed in same group.
All alkali are place in group 1 and have 1 valance electron in the outermost shell
The specific heat of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g., .) The formula for specific heat is:
,
where
is the amount of heat supplied.
is the mass of the sample.
is the increase in temperature.
In this question, the value of (amount of heat supplied to the metal) and (mass of the metal sample) are the same for all four metals. To find (change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample, can be expressed as a fraction. Additionally, the specific heat of sample, , is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.
high-pressure systems normally associate with dry weather and mostly clear skies. This usually brings some light winds of cool, dry air, and brings fair weather.
Molar mass (CaCl2) = 40.1 +2*35.5 = 111.1 g/mol Molar mass (AlCl3) = 27.0 +3*35.5= 133.5 g/ mol
3CaCl2+Al2O3 -------->3CaO +2AlCl3 mole from reaction 3 mol 2 mol mass from reaction 3mol* 111.1g/mol 2 mol*133.5g/mol 333.3 g 267.0 g mass from problem 45.7 g x g
Proportion: 333.3 g CaCl2 ------- 267.0 g AlCl3 45.7 g CaCl2 -------- x g AlCl3