Answer:
the answer is not correct
A molecule that has a central atom surrounded by three single bond pairs and one unshared pair would have a trigonal pyramidal shape. The electon arrangement of this is called tetrahedral. It involves one atom located at the apex and at the corners are three atoms with a trigonal base. An example would be ammonia or NH3. Nitrogen has five valence electrons so that it needs to three more electrons to satisfy the octet rule and be stable. It would share electrons with the three nitrogen present. In order, to achieve the most stable geometry, the three atoms of hydrogen would attach with a bond angle of 109 degrees.
Answer:
Reducing sugars are sugars where the anomeric carbon has an OH group attached that can reduce other compounds. Non-reducing sugars do not have an OH group attached to the anomeric carbon so they cannot reduce other compounds. ... Maltose and lactose are reducing sugars, while sucrose is a non-reducing sugar
Answer:
(a) sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d) sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Explanation:
Alkanes or the carbons with all the single bonds are sp³ hybridized.
Alkenes or the carbons with double bond(s) are sp² hybridized.
Alkynes or the carbons with triple bond are sp hybridized.
Considering:
(a) H₃C-CH₃ , Both the carbons are bonded by single bond so both the carbons are sp³ hybridized.
Hence,
sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) H₃C-CH=CH₂ , The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp² hybridized because they are bonded by double bond.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) H₃C-C≡C-CH₂OH , The carbons of the methyl group and alcoholic group are sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp hybridized because they are bonded by triple bond.
Hence,
sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d)CH₃CH=O, The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The other carbon is sp² hybridized because it is bonded by double bond to oxygen.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Answer:
mutation
Explanation:
a mutation in the genes causes cancer cells to reproduce and infect others when it should kill itself off immediately