Answer:
When you're talking factors, you're talking about some sort of integer; that's because “factors” depends on the concept of divisibility, which are virtually exclusive to integers. When you're talking “greater than”, you're excluding complex numbers (where the concept of ordering doesn't exist) and you're probably assuming positive integers. If you are, then no; no positive integer has factors that are larger than it.
If you go beyond positive numbers, that changes. 0 is an integer, and has every integer, except itself, as factors; since its positive factors are greater than zero, there are factors of zero that are greater than zero. If you extend to include negative numbers, you always have both positive and negative factors; and since all positive integers are greater than all negative integers, all negative integers have factors that are greater than them.
Beyond zero, though, no integer has factors whose magnitudes are greater than its own. And that's a principle that can be extended even to the complex integers
Step-by-step explanation:
Ok so easy peasy
remember that when divide or multiply by negative, reverse the inequality symbol example
2>3 times -1=
-2<-3 so
-150x<u>></u>-2400
divide both sides by -150
flip sign
<u />x<u><</u>16
-336<u>></u>-21y
divide both sides by -21
flip sign
16<u><</u>y
they seem to have the same solution
x=y<u>></u>16
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█
Step-by-step explanation:
Answer:
Step-by-step explanation:
Volume = surface area of base * height

You're correct, the answer is C.
Given any function of the form

, then the derivative of y with respect to x (

) is written as:

In which

is any constant, this is called the power rule for differentiation.
For this example we have

, first lets get rid of the quotient and write the expression in the form

:

Now we can directly apply the rule stated at the beginning (in which

):

Note that whenever we differentiate a function, we simply "ignore" the constants (we take them out of the derivative).