Dividing by a fraction is equivalent to multiply by its reciprocal, then:

Now, we need to express the quadratic polynomials using their roots, as follows:

where y1 and y2 are the roots.
Applying the quadratic formula to the first polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{7\pm\sqrt[]{(-7)^2-4\cdot3\cdot(-6)}}{2\cdot3} \\ y_{1,2}=\frac{7\pm\sqrt[]{121}}{6} \\ y_1=\frac{7+11}{6}=3 \\ y_2=\frac{7-11}{6}=-\frac{2}{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B%28-7%29%5E2-4%5Ccdot3%5Ccdot%28-6%29%7D%7D%7B2%5Ccdot3%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B7%5Cpm%5Csqrt%5B%5D%7B121%7D%7D%7B6%7D%20%5C%5C%20y_1%3D%5Cfrac%7B7%2B11%7D%7B6%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B7-11%7D%7B6%7D%3D-%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the second polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot2\cdot(-3)}}{2\cdot2} \\ y_{1,2}=\frac{-1\pm\sqrt[]{25}}{4} \\ y_1=\frac{-1+5}{4}=1 \\ y_2=\frac{-1-5}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot2%5Ccdot%28-3%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B25%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B5%7D%7B4%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-5%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the third polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{3\pm\sqrt[]{(-3)^2-4\cdot2\cdot(-9)}}{2\cdot2} \\ y_{1,2}=\frac{3\pm\sqrt[]{81}}{4} \\ y_1=\frac{3+9}{4}=3 \\ y_2=\frac{3-9}{4}=-\frac{3}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B%28-3%29%5E2-4%5Ccdot2%5Ccdot%28-9%29%7D%7D%7B2%5Ccdot2%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B3%5Cpm%5Csqrt%5B%5D%7B81%7D%7D%7B4%7D%20%5C%5C%20y_1%3D%5Cfrac%7B3%2B9%7D%7B4%7D%3D3%20%5C%5C%20y_2%3D%5Cfrac%7B3-9%7D%7B4%7D%3D-%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Applying the quadratic formula to the fourth polynomial:
![\begin{gathered} y_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ y_{1,2}=\frac{-1\pm\sqrt[]{1^2-4\cdot1\cdot(-2)}}{2\cdot1} \\ y_{1,2}=\frac{-1\pm\sqrt[]{9}}{2} \\ y_1=\frac{-1+3}{2}=1 \\ y_2=\frac{-1-3}{2}=-2 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B1%5E2-4%5Ccdot1%5Ccdot%28-2%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20y_%7B1%2C2%7D%3D%5Cfrac%7B-1%5Cpm%5Csqrt%5B%5D%7B9%7D%7D%7B2%7D%20%5C%5C%20y_1%3D%5Cfrac%7B-1%2B3%7D%7B2%7D%3D1%20%5C%5C%20y_2%3D%5Cfrac%7B-1-3%7D%7B2%7D%3D-2%20%5Cend%7Bgathered%7D)
Substituting into the rational expression and simplifying:
Answer:
The 8th term of the sequence is 896/2187.
Step-by-step explanation:
We want to find the 8th term of a geometric sequence whose common ratio is 2/3 and whose first term is 7.
We can write a direct formula. Recall that the direct formula of a geometric sequence is given by:

Where <em>a</em> is the initial term and <em>r</em> is the common ratio.
Substitute:

To find the 8th term, let <em>n</em> = 8. Substitute and evaluate:

In conclusion, the 8th term of the sequence is 896/2187.
X⁵+ x +2x³ + 6+ 2x² = x⁵ + 2x³ +2x² + x + 6
9514 1404 393
Answer:
9 ft, 22 ft, 23 ft
Step-by-step explanation:
Let s represent the length of the shortest side. Then the middle length side is (2s+4) and the longest side is (3s-4). The perimeter is the sum of the side lengths:
54 = s +(2s +4) +(3s -4)
54 = 6s . . . . . . . . . . . . . . collect terms
9 = s . . . . . . . . . . divide by 6
2s+4 = 2·9 +4 = 22
3s -4 = 3·9 -4 = 23
The lengths of the three sides are 9 feet, 22 feet, and 23 feet.
<span>The best answer is C.add 2 to both sides of the equation.
</span>5=x-2
5+2=x-2+2
7=x-0
x=7