Answer:
yes
Step-by-step explanation:
try using a vertical line, if you move the vertical line across the graph and the line touches the graph only at one point, than it means it is a function
<span>Winning Probablity = 0.2, hence Losing Probability = 0.8
Probablity of winning atmost one time, that means win one and lose four times or lose all the times. So p(W1 or W0) = p (W1) + p(W0)
Winning once W1 is equal to L4, winning zero times is losing 5 times.
p(W1) = p(W1&L4) and this happens 5 times; p(W0) = p(L5);
p (W1) + p(W0) = p(L4) + p(L5)
p(L4) + p(L5) = (5 x 0.2 x 0.8^4) + (0.8^5) => 0.8^4 + 0.8^5
p(W1 or W0) = 0.4096 + 0.32768 = 0.7373</span>
Answer: Wouldn't the answer be A?
Step-by-step explanation:
We are given with
x1 = 20 min
s1 = 2 min
x2 = 30 min
s2 = 4 min
p = 0.9
Condition (x > 25)
We need to get the t-value between the two means and comparing it wit the t-value for the time of 25 minutes given that there is a 90% probability that the weather will be good. Simply use the t-test formula and use the t-test table to get the probability.
Answer: the third one
Step-by-step explanation: