Answer:
Step-by-step explanation:
You want to use the distributive property, i.e. the possibility to distribute a multiplication to both terms of an sum/subtraction.
In this case, if you think of 395 as of 400-5, you have

And you can use the distributive property to write

Both of these multiplications are easy to perform in your mind:

Answer:
x = 35
Step-by-step explanation:
Solve for x:
5 (x + 20) = 7 x + 30
Expand out terms of the left hand side:
5 x + 100 = 7 x + 30
Subtract 7 x from both sides:
(5 x - 7 x) + 100 = (7 x - 7 x) + 30
5 x - 7 x = -2 x:
-2 x + 100 = (7 x - 7 x) + 30
7 x - 7 x = 0:
100 - 2 x = 30
Subtract 100 from both sides:
(100 - 100) - 2 x = 30 - 100
100 - 100 = 0:
-2 x = 30 - 100
30 - 100 = -70:
-2 x = -70
Divide both sides of -2 x = -70 by -2:
(-2 x)/(-2) = (-70)/(-2)
(-2)/(-2) = 1:
x = (-70)/(-2)
The gcd of -70 and -2 is -2, so (-70)/(-2) = (-2×35)/(-2×1) = (-2)/(-2)×35 = 35:
Answer: x = 35
Answer:
12/5 or 2⅖
Step-by-step explanation:
2x/3 = 8/5
2x = 3 × 8/5
2x = 24/5
x = 24/5 ÷ 2
x = 12/5
Or 2⅖
<em>Ah, female problems, Amiright?</em>
<em>If you don't feel comfortable talking to him, then you don't have to, it's not against the law. And if he tries talking to you and it becomes awkward, make sure that someone is with you that you know will keep a good convo going.</em>
<em>Also</em><em>,</em><em> </em><em>he</em><em> </em><em>probably</em><em> </em><em>liked</em><em> </em><em>you</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>your</em><em> </em><em>personality</em><em>,</em><em> </em><em>or</em><em> </em><em>maybe</em><em> </em><em>the</em><em> </em><em>way</em><em> </em><em>you</em><em> </em><em>look</em><em>,</em><em> </em><em>or</em><em> </em><em>talk</em><em>,</em><em> </em><em>or</em><em> </em><em>wear</em><em> </em><em>you</em><em> </em><em>hair</em><em>,</em><em> </em><em>or</em><em> </em><em>even</em><em> </em><em>your</em><em> </em><em>style</em><em>.</em><em> </em><em>The</em><em> </em><em>possiblys</em><em> </em><em>are</em><em> </em><em>endless</em><em>.</em>
<em>Honestly, I've been in </em><em>a</em><em> </em><em>similar</em><em> situation before, that's how I know what to do.</em>