Molecular formulas:
- CH₂O;
- C₂H₄O₂;
- C₆H₁₂O₆.
<h3>Explanation</h3>
The empirical formula of a compound tells only the ratio between atoms of each element. The empirical formula CH₂O indicates that in this compound,
- for each C atom, there are
- two H atoms, and
- one O atom.
The molecular weight (molar mass) of the molecule depends on how many such sets of atoms in each molecule. The empirical formula doesn't tell anything about that number.
It's possible to <em>add</em> more of those sets of atoms to a molecular formula to increase its molar mass. For every extra set of those atoms added, the molar mass increase by the mass of that set of atoms. The mass of one mole of C atoms, two mole of H atoms, and one mole of O atoms is
.
- CH₂O- 30.0 g/mol;
- C₂H₄O₂- 30.0 + 30.0 = 2 × 30.0 = 60.0 g/mol;
- C₃H₆O₃- 30.0 + 30.0 + 30.0 = 3 × 30.0 = 90.0 g/mol.
It takes one set of those atoms to achieve a molar mass of 30.0 g/mol. Hence the molecular formula CH₂O.
It takes two sets of those atoms to achieve a molar mass of 60.0 g/mol. Hence the molecular formula C₂H₄O₂.
It takes
sets of those atoms to achieve a molar mass of 180.0 g/mol. Hence the molecular formula C₆H₁₂O₆.
The answer must be a mass x velocity
Answer:
option c) 0.88c is the correct answer
Explanation:
using the Lorrentz equation we have

where,
t = time taken to cover the distance
d = Distance
v = velocity
c = speed of light
given
d = 15 light years
Now,

or

or

or

or

or

or

Answer:
Proportional
Explanation:
The conditions that must be met to produce SHM are;
-The restoring force must be proportional to the displacement and act opposite to the direction of motion with no drag forces or friction.
- The frequency of oscillation does not depend on the amplitude.
Answer:
Blue light has the higher frequency.
Explanation:
Remember that the relation between wavelength and frequency for any electromagnetic wave in the vacuum is

where
is the speed of light in the vacuum. As you can see, the relation between frequency and wavelength is inversely proportional. The higher is the wavelength, the lower is the frequency.