Answer:
By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.
here weight of the child =21kgx9.8m/s2 = 205.8N
the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.
torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.
net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.
b) Ta = 2.5x151 = 377.5N-m
Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.
c)Ta = 2x151 = 302N-m
Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.
Is this a book and most likely because the were cute
At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
<h3>What is quark confinement?</h3>
Note that one quark is never found on its own but if particles are said to be smashed together and quarks are found, they are said to be like ends of rubber bands that expands.
Hence, At the time of quark confinement, when the universe was 10-6 seconds old, there is found to be one additional proton for every billion antiprotons.
Learn more about quark from
brainly.com/question/15103512
#SPJ1
Because they are placed in different habitable zones
Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N