1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
4 years ago
6

The force between two charged bodies is called ______________.

Physics
2 answers:
stepladder [879]4 years ago
6 0

The Coulomb force between two or more charged bodies is the force between them due to Coulomb's law. If the particles are both positively or negatively charged, the force is repulsive; if they are of opposite charge, it is attractive. ... Like the gravitational force, the Coulomb force is an inverse square law.

trapecia [35]4 years ago
5 0

Answer:

if it is due to mass then it is gravitational force

if it is due to charge then it is electric force

Explanation:

or it might be love.. :)

You might be interested in
A 55 newton force applied on an object moves the object 10 meters in the same direction as the force. What is the value of work
kifflom [539]

Answer: Option D: 5.5×10²Joules

Explanation:

Work done is the product of applied force and displacement of the object in the direction of force.

W = F.s = F s cosθ

It is given that the force applied is, F = 55 N

The displacement in the direction of force, s = 10 m

The angle between force and displacement, θ = 0°

Thus, work done on the object:

W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J

Hence, the correct option is D.

3 0
3 years ago
When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal speed. Once he has reache
Masteriza [31]

Answer:

b) True.    the force of air drag on him is equal to his weight.

Explanation:

Let us propose the solution of the problem in order to analyze the given statements.

The problem must be solved with Newton's second law.

When he jumps off the plane

     fr - w = ma

Where the friction force has some form of type.

     fr = G v + H v²

Let's replace

     (G v + H v²) - mg = m dv / dt

We can see that the friction force increases as the speed increases

At the equilibrium point

      fr - w = 0

      fr = mg

      (G v + H v2) = mg

For low speeds the quadratic depended is not important, so we can reduce the equation to

     G v = mg

     v = mg / G

This is the terminal speed.

Now let's analyze the claims

a) False is g between the friction force constant

b) True.

c) False. It is equal to the weight

d) False. In the terminal speed the acceleration is zero

e) False. The friction force is equal to the weight

3 0
3 years ago
Apilot of mass 70 kg rides a fighter jet The fighter jet moves in a vertical circle of radius 100 m at a constant
Cerrena [4.2K]

Answer:

the  force exerted by the seat on the pilot is 10766.7 N

Explanation:

The computation of the force exerted by the seat on the pilot is as follows:

F = Mg + \frac{MV^2}{R}\\\\= 70 \times 9.81  + \frac{70 \times 120^2}{100}\\\\= 10766.7 N

Hence, the  force exerted by the seat on the pilot is 10766.7 N

4 0
3 years ago
the maximum range of a projectile is 2÷√3 times its actual range what is the angle of the projection for the actual range​
Murrr4er [49]

Answer:

The actual angle is 30°

Explanation:

<h2>Equation of projectile:</h2><h2>y axis:</h2>

v_y(t)=vo*sin(A)-g*t

the velocity is Zero when the projectile reach in the maximum altitude:

0=vo-gt\\t=\frac{vo}{g}

When the time is vo/g the projectile are in the middle of the range.

<h2>x axis:</h2>

d_x(t)=vo*cos(A)*t\\

R=Range

R=d_x(t=2*\frac{vo}{g})

R=vo*cos(A)*2\frac{vo}{g} \\\\R=\frac{(vo)^{2}*2* sin(A)cos(A)}{g} \\\\R=\frac{(vo)^{2} sin(2A)}{g}

**sin(2A)=2sin(A)cos(A)

<h2>The maximum range occurs when A=45°(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>

Let B the actual angle of projectile

\frac{vo^{2} }{g} =(\frac{2}{\sqrt{3} }) \frac{vo^{2} *sin(2B)}{g}\\\\1= \frac{2 }{\sqrt{3}} *sin(2B)\\\\sin(2B)=\frac{\sqrt{3}}{2}\\\\

2B=60°

B=30°

7 0
3 years ago
An ore car of mass 39000 kg starts from rest and rolls downhill on tracks from a mine. At the end of the tracks, 19 m lower vert
cupoosta [38]

Answer:

The compression in the spring is 5.88 meters.                

Explanation:

Given that,

Mass of the car, m = 39000 kg

Height of the car, h = 19 m

Spring constant of the spring, k=4.2\times 10^5\ N/m

We need to find the compression in the spring in stopping the ore car. It can be done by balancing loss in gravitational potential energy and the increase in elastic energy. So,

mgh=\dfrac{1}{2}kx^2

x is the compression in spring

x=\sqrt{\dfrac{2mgh}{k}} \\\\x=\sqrt{\dfrac{2\times 39000\times 19\times 9.8}{4.2\times 10^5}} \\\\x=5.88\ m

So, the compression in the spring is 5.88 meters.                                                                                                                  

6 0
3 years ago
Other questions:
  • Troy pushes on a car for 10 seconds, during which he applies an impulse of 300 kg•m/s. what force does he apply to the car?
    9·2 answers
  • A roller coaster at an amusement park goes from the top of a tall hill to the bottom. during this time, the roller coaster
    6·1 answer
  • Which of the following should be useful to show the percentage of total growth in plants exposed to various pollutants?
    8·2 answers
  • When she rides her bike, she gets to her first classroom building 36 minutes faster than when she walks. Of her average walking
    8·2 answers
  • Switches, flashers, and similar devices controlling transformers and electronic power supplies shall be rated for controlling in
    5·1 answer
  • An object at 20∘c absorbs 25.0 j of heat. what is the change in entropy δs of the object?
    13·2 answers
  • Which best describes a value for density
    13·1 answer
  • 12) If you are travelling at 0.75c how fast are you moving? (3 points)
    5·1 answer
  • I'll mark brainiest if you help me
    11·1 answer
  • Find the cross-sectional area.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!