Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
Answer:
b) True. the force of air drag on him is equal to his weight.
Explanation:
Let us propose the solution of the problem in order to analyze the given statements.
The problem must be solved with Newton's second law.
When he jumps off the plane
fr - w = ma
Where the friction force has some form of type.
fr = G v + H v²
Let's replace
(G v + H v²) - mg = m dv / dt
We can see that the friction force increases as the speed increases
At the equilibrium point
fr - w = 0
fr = mg
(G v + H v2) = mg
For low speeds the quadratic depended is not important, so we can reduce the equation to
G v = mg
v = mg / G
This is the terminal speed.
Now let's analyze the claims
a) False is g between the friction force constant
b) True.
c) False. It is equal to the weight
d) False. In the terminal speed the acceleration is zero
e) False. The friction force is equal to the weight
Answer:
the force exerted by the seat on the pilot is 10766.7 N
Explanation:
The computation of the force exerted by the seat on the pilot is as follows:

Hence, the force exerted by the seat on the pilot is 10766.7 N
Answer:
The actual angle is 30°
Explanation:
<h2>Equation of projectile:</h2><h2>y axis:</h2>

the velocity is Zero when the projectile reach in the maximum altitude:

When the time is vo/g the projectile are in the middle of the range.
<h2>x axis:</h2>

R=Range


**sin(2A)=2sin(A)cos(A)
<h2>The maximum range occurs when A=45°
(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>
Let B the actual angle of projectile

2B=60°
B=30°
Answer:
The compression in the spring is 5.88 meters.
Explanation:
Given that,
Mass of the car, m = 39000 kg
Height of the car, h = 19 m
Spring constant of the spring, 
We need to find the compression in the spring in stopping the ore car. It can be done by balancing loss in gravitational potential energy and the increase in elastic energy. So,

x is the compression in spring

So, the compression in the spring is 5.88 meters.