Answer:
a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J
Explanation:
a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s
The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s
So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s
b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.
p₂ = (1.3 + 39.0)v = 40.3v
From the principle of conservation of momentum,
p₁ = p₂
37.7 kgm/s = 40.3v
v = 37.7/40.3 = 0.94 m/s
So the final velocity of the two-block system is 0.94 m/s
c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²
So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J
Answer:
Oxygen cycle
Explanation:
The components of the reservoirs of oxygen that are exchange in our environment is the oxygen cycle
It suggests the movement of oxygen between the living and non-living parts.
- The cycle does not account for oxygen that is trapped and cannot be exchanged in nature.
- Oxygen is important component of the atmosphere.
- Gaseous exchange between living organisms and atmosphere involves oxygen to a very large extent.
Answer:
B.Ionizing radiation is the correct answer.
Explanation:
Ionizing radiation has sufficient energy that it can convert atoms and molecules into ions.
It has a sufficient amount of energy that it can separate tightly confined electrons from the orbit of an atom and causing that atom to become ionized.
Newtons law of motion for every action there’s an equal and opposite reaction.
Answer:
10 kJ
Explanation:
W = Fd
W = (μN)(vt)
W = μ(mg)vt
W = 0.7(42.9)(9.81)(9)(3.8)
W = 10,075.12506 J
W ≈ 10 kJ