1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
3 years ago
11

Which ordered pair is a solution to the system of linear equations -4x+y=8 and x-5y=17

Mathematics
2 answers:
aliina [53]3 years ago
8 0
The answer would be (3, -4).
Scorpion4ik [409]3 years ago
7 0
X-5y=17 then x = 5y + 17
replace x = 5y + 17  into <span>-4x+y=8

</span>-4(5y + 17) +y = 8
-20y - 68 + y = 8
-19y = 8 + 68
-19y = 76
y = 76/-19
y = -4

x = 5y + 17
x = 5(-4) + 17
x = -20 + 17
x = 3

Answer: the order pair (3, -4)
You might be interested in
Use the substitution method to solve each system of equations. Write the answer in ordered pairs.
tatyana61 [14]

x -y = 1

5x + 3y = 45

Solve the first equation for x: x = y + 1

Substitute x in the second with y + 1

5x + 3y = 45

5(y + 1) + 3y = 45

5y + 5 + 3y = 45

8y + 5 = 45

8y = 40

y = 5

Substitute 5 for y in x = y + 1

x = y + 1

x = 5 + 1

x = 6

Answer: (6, 5)

5 0
3 years ago
Hey! i’ll give brainliest please help
miss Akunina [59]

Answer:

D

Step-by-step explanation:

8 0
3 years ago
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
When Angela was born, her grandparents deposited $2,500 into a college savings account paying 3% interest compounded CONTINUOUSL
Kitty [74]

Answer:

akhavkreugvakrehfgv

Step-by-step explanation:

5 0
3 years ago
The linear regression equation is y = 61. 93x - 1. 79. According to the model, the slope can be interpreted as:
devlian [24]

The slope of the linear regression equation y = 61. 93x - 1. 79 is attached with the response.

<h3>What is linear regression?</h3>

Linear regression is the most primary and generally used predictive research. Regression calculations are utilised to represent data and to describe the association.

The slope of the linear regression equation represented in the graph is the straight-line cutting the intercepts on the y axis at 1.79.

To know more about linear regression follow

brainly.com/question/21738659

#SPJ4

7 0
2 years ago
Other questions:
  • What is 57.8 divided by 81
    5·1 answer
  • An integer is 3 less than 5 times another. If the product of the two integers is 36, then find the integers.
    14·2 answers
  • PLEASE HELP!!!! LAST QUESTION ON FINALS I CAN'T FIGURE OUT!!!!! WILL MARK BRAINLIEST!!!
    13·1 answer
  • HELP PLEASE THIS IS MY LAST QUESTION OF THIS TEST AND I LITERALLY DONT KNOW WHAT TO DOOO!
    12·1 answer
  • Express this number in scientific notation. 0.0048
    13·1 answer
  • Which expression is equivalent to (xy)z?<br><br>A (x+y)+z<br>B 2z(xy)<br>C x(yz)<br>D x(y+z)​
    10·2 answers
  • PLSSS HELP!! (Name the highlighted angle found on the left.)
    7·2 answers
  • Cost of a jacket: $146.75<br> Tax: 5%<br> What is the new cost?
    11·2 answers
  • How to do this question plz answer ​
    10·2 answers
  • 80 is 5% of what number?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!