X = -3.
The distance from p(-9, 0, 0) is
d = sqrt((x+9)^2 + y^2 + z^2)
The distance from q(3,0,0) is
d = sqrt((x-3)^2 + y^2 + z^2)
Let's set them equal to each other.
sqrt((x+9)^2 + y^2 + z^2) = sqrt((x-3)^2 + y^2 + z^2)
Square both sides, then simplify
(x+9)^2 + y^2 + z^2 = (x-3)^2 + y^2 + z^2
x^2 + 18x + 81 + y^2 + z^2 = x^2 - 6x + 9 + y^2 + z^2
18x + 81 = - 6x + 9
24x + 81 = 9
24x = -72
x = -3
So the desired equation is x = -3 which defines a plane.
Answer:
The answer is b
Step-by-step explanation:
Step-by-step explanation:
Consider a function
f
(
x
)
which is twice differentiable. The graph of such a function will be concave upwards in the intervals where the second derivative is positive and the graph will be concave downwards in the intervals where the second derivative is negative. To find these intervals we need to find the inflection points i.e. the x-values where the second derivative is 0.
I used 3.14 for pi to solve easier.
6. 6.28
7. 21.98
8. 94.2
Answer:
i don't see nothing
Step-by-step explanation: