Use pi•r^2 for the formula of a circle. filling it in, you get 3.14•64 which is 200.96
Answer:
Domain: -5
x < 1
Range: -4
y < 7
Step-by-step explanation:
The domain is the x-values for which the function exists. It starts off at x=-5, and since the dot is closed it includes it, and finishes at x = 1, where the dot is open.
The range is the y-values for which the function exists. It starts at y= -4, and since the dot is closed there, it includes his value. Then, it finishes at y = 7, where the dot is open meaning it doesn't include it.
Rounded it is 11.7 cubic cm.
Answer:
The initial value in the word problem is the output value when input value is set to zero.
Step-by-step explanation:
- In the question, it is given that a problem uses a linear function.
- It is required to explain how to interpret the initial value in a word problem.
- In order to find the initial value in a world problem, find the output value when input value is set to zero.
- If the initial value is marked as b for a linear function f(x), find it as follow,
![\begin{array}{rrrrr} 10x&-&18y&=&2\\ -5x&+&9y&=&-1 \end{array}~\hfill \implies ~\hfill \stackrel{\textit{second equation }\times 2}{ \begin{array}{rrrrr} 10x&-&18y&=&2\\ 2(-5x&+&9y&)=&2(-1) \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{rrrrr} 10x&-&18y&=&2\\ -10x&+&18y&=&-2\\\cline{1-5} 0&+&0&=&0 \end{array}\qquad \impliedby \textit{another way of saying \underline{infinite solutions}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-5x%26%2B%269y%26%3D%26-1%20%5Cend%7Barray%7D~%5Chfill%20%5Cimplies%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsecond%20equation%20%7D%5Ctimes%202%7D%7B%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%202%28-5x%26%2B%269y%26%29%3D%262%28-1%29%20%5Cend%7Barray%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Brrrrr%7D%2010x%26-%2618y%26%3D%262%5C%5C%20-10x%26%2B%2618y%26%3D%26-2%5C%5C%5Ccline%7B1-5%7D%200%26%2B%260%26%3D%260%20%5Cend%7Barray%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Banother%20way%20of%20saying%20%5Cunderline%7Binfinite%20solutions%7D%7D)
if we were to solve both equations for "y", we'd get

notice, the 1st equation is really the 2nd in disguise, since both lines are just pancaked on top of each other, every point in the lines is a solution or an intersection, and since both go to infinity, well, there you have it.