Answer:
Step-by-step explanation:
MSDCNMDVNDV,SNXDLSDHRFHN
Answer:
13
Step-by-step explanation:
Do the divison! :D It's hard to write out on here, but you can find a lot of other online resources on how to do it, I reccomend Khan Academy.
First, we need to set up our two equations. For the picture of this scenario, there is one length (L) and two widths (W) because the beach removes one of the lengths. We will have a perimeter equation and an area equation.
P = L + 2W
A = L * W
Now that we have our equations, we need to plug in what we know, which is the 40m of rope.
40 = L + 2W
A = L * W
Then, we need to solve for one of the variables in the perimeter equation. I will solve for L.
L = 40 - 2W
Now, we can substitute the value for L into L in the area equation and get a quadratic equation.
A = W(40 - 2W)
A = -2W^2 - 40W
The maximum area will occur where the derivative equals 0, or at the absolute value of the x-value of the vertex of the parabola.
V = -b/2a
V = 40/2(2) = 40/4 = 10
Derivative:
-4w - 40 = 0
-4w = 40
w = |-10| = 10
To find the other dimension, use the perimeter equation.
40 = L + 2(10)
40 = L + 20
L = 20m
Therefore, the dimensions of the area are 10m by 20m.
Hope this helps!
Answer:
<h2>3Q + 2p</h2>
Step-by-step explanation:
