Answer:
Step-by-step explanation:
Since the amount of soft drink dispensed into a cup is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = amount in ounce of soft drink dispensed into cup.
µ = mean amount
σ = standard deviation
From the information given,
µ = 7.6oz
σ = 0.4 oz
a) The probability that the machine will overflow an 8-ounce cup is expressed as
P(x > 8) = 1 - P(x ≤ 8)
For x = 8,
z = (8 - 7.6)/0.4 = 1
Looking at the normal distribution table, the probability corresponding to the z score is 0.84
P(x ≤ 8) = 1 - 0.84 = 0.16
b) P(x< 8) = 0.84
c) when the machine has just been loaded with 848 cups, the number of cups expected to overflow when served is
0.16 × 848 = 136 cups
46500 X 7.65%=3557.25
46500-3557.25-3200-930=$38812.75
Ans:$38812.75
A) ratio of the perimeters is the same as ratio of corresponding sides, so:
b) ratio of the areas is equal to k² so: