Well, let's take a peek at the graph of that line, hmmm let's pick two points, heck, those tow on the extremes anyway, and those are (-5,2) and (5,-1), alrite.. now, let's do some checking on that.

It would be 5/8 . First option
Let L and S represent the weights of large and small boxes, respectively. The problem statement gives rise to two equations:
.. 7L +9S = 273
.. 5L +3S = 141
You can solve these equations various ways. Using "elimination", we can multiply the second equation by 3 and subtract the first equation.
.. 3(5L +3S) -(7L +9S) = 3(141) -(273)
.. 8L = 150
.. L = 150/8 = 18.75
Then we can substitute into either equation to find S. Let's use the second one.
.. 5*18.75 +3S = 141
.. S = (141 -93.75)/3 = 15.75
A large box weighs 18.75 kg; a small box weighs 15.75 kg.
Answer:
The area of this park is 130.60 square miles.
Step-by-step explanation:
Given : The scale of a certain map is
inch = 16 miles. A square park is represented on the map by a square with side length
inch.
To find : What is the actual area of this park?
Solution :
The scale of a certain map is
inch = 16 miles.
Let the side length of
inch = x miles.
So, 




The side length of a square is 11.428 miles.
The area of the square is
.


To nearest hundredth,
The area of this park is 130.60 square miles.