<u>Answer</u>
Yes, the car reaches the door before the gate closes.
<u>Explanation</u>
The time taken by the car to reach at the door.
Time = distance / time
= 22/13
= 1.6923 seconds
Time taken by the door to close up to the height of the car.
Distance the door has to move to prevent the car from escaping = 9.1.4 = 7.6 m
From newton's 2nd law of motion;
s = ut + 1/2 gt²
7.6 = 0.6t + 1/2 × 10t²
7.6 = 0.6t + 5t²
50t² + 6t - 76 = 0
Solving this quadrilatic equation,
t = 28.537 seconds
Answer: Yes, the car reaches the door before the gate closes.
The relationship between a car and energy is that the car uses gas to produce speed within energy needs to be powered
Answer:
The net force is 392N, pointing down.
Explanation:
The net force is the sum of all forces acting on the rock, namely the gravity ("+" acting downward) and the friction force due to air resistance ("-" acting upward):

The net force is 392N and pointing down (positive)/
Answer: opening of the nicotinic acetylcholine receptor channels.
Explanation:
Neuromuscular junction is a special junction formed between a motor neurone and a muscle fibre. The junction is fortified with nerves and receptors that helps in the transmission of signals from the motor neurone to the muscle fibre in order to bring about the desired voluntary movements through muscular contraction.
Nicotinic acetylcholine receptor are activated through the binding of acetylcholine at the neuromuscular junction. This action leads to influx of sodium ions to accomplish endplate potential.
Answer:
B = E/c = 14.04T₁ = 11 pT
Explanation:
We know c = E/B where E = maximum electric field = 3.30 × 10⁻³ V/m, B = maximum magnetic field and c = speed of light
B = E/c also c = fλ = λ/T where λ = wavelength = 235 μm = 235 × 10⁻⁶ m and T = period
c = λ₁/T₁ = λ₂/T₂ T₂ = 2.8T₁ where λ₁,λ₂ are the initial and final wavelengths and T₁,T₂ are the initial and final periods.
T₁ = λ₁/c = 235 × 10⁻⁶ m/3 × 10⁸ m/s = 7.833 × 10⁻¹³ s = 0.7833 ps
T₂ = 2.8T₁ = 2.8 × 7.833 × 10⁻¹³ s = 21.93 × 10⁻¹³ s = 2.193 ps
λ₁/T₁ = λ₂/2.8T₁
λ₂ = 2.8λ₁ = 2.8 × 235 μm = 658 μm
c = λ₂/T₂ = 2.8λ₁/2.8T₁ = λ₁/T₁ , since the speed of light c is constant.
B = E/c = E/λ₁/T₁ = ET₁/λ₁
B = ET₁/λ₁ = 3.30 × 10⁻³ V/m × T₁/235 × 10⁻⁶ m = 14.04T₁ Tesla
B = 14.04 × 7.833 × 10⁻¹³ s = 10.99 × 10⁻¹² T ≅ 11 pT