1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
15

A mixture containing 20 mole % butane, 35 mole % pentane and rest

Chemistry
2 answers:
notka56 [123]3 years ago
8 0

Answer:

2.5 % butane, 42.2 % pentane and 55.3 % hexane

Explanation:

Hello,

In this case, the mass balance for each substance is given by:

Butane:z_bF=y_bD+x_bB\\\\Pentane: z_pF=y_pD+x_pB\\\\Hexane: z_hF=y_hD+x_hB

Whereas y accounts for the fractions at the outlet distillate and x for the fractions at the outlet bottoms. Moreover, with the 90 % recovery of butane, we can write:

0.9=\frac{y_bD}{z_bF}

So we can compute the product of the molar fraction of butane at the distillate by total distillate flow by assuming a 100-mol feed:

y_bD=0.9*z_bF=0.9*0.2*100mol=18mol

The total distillate flow:

y_bD=18mol\\\\D=\frac{18mol}{0.95} =18.95mol

And the total bottoms flow:

F=D+B\\\\B=F-D=100mol-18.95mol=81.05mol

Next, by using the mass balance of butane, we compute the molar fraction of butane at the bottoms:

x_b=\frac{z_bF-y_bD}{B} =\frac{0.2*100mol-18mol}{81.05} =0.025

Then, the molar fraction of pentane and hexane:

x_p=\frac{z_pF-y_pD}{B} =\frac{0.35*100mol-0.04*18.95mol}{81.05} =0.422

x_h=\frac{z_hF-y_hD}{B} =\frac{(1-0.2-0.35)*100mol-(1-0.95-0.04)*18.95mol}{81.05} =0.553

Therefore, the molar composition of the bottom product is 2.5 % butane, 42.2 % pentane and 55.3 % hexane.

NOTE: notice the result is independent of the value of the assumed feed, it means that no matter the basis, the compositions will be the same for the same recovery of butane at the feed, only the flows will change.

Regards.

Sliva [168]3 years ago
7 0

Answer:

The percentage composition of the Bottoms is

- 2.46% Butane.

- 42.25% Pentane.

- 55 29% Hexane.

Explanation:

The feed is eventually separated into distillate and bottoms at the end of the day.

If the total number of moles in the feed = F, and we assume an initial basis of 100 mol

Total number of moles in the distillate = D

Total number of moles in the bottoms = B

Since distillation is a physical separation technique, with no chemical reaction expected,

The overall balance of the system,

F = 100 = B + D (eqn 1)

In the feed, there is 20 mole% of butane, 35 mole% of pentane and the rest, that is, 45 mole% of hexane.

Butane = 0.20F moles = 0 2×100 = 20 moles

Pentane = 0.35F moles = 0.35×100 = 35 moles

Hexane = 0.45F moles = 0.45×100 = 45 moles

In the distillate, there is 95 mole% of butane, 4 mole% of pentane and the rest, that is, 1 mole% is hexane

Butane = 0.95D moles

Pentane = 0.04D moles

Hexane = 0.01D moles

The composition of the Bottoms isn't known.

But, it is given that the distillate is expected to contain 90% of the butane in the feed

Component balance for butane, based on this information

Butane in the distillate = 90% of butane in feed

0.95D = 90% × 0.20F = 0.18F

Butane in the distillate = 0.95D = 0.18F

D = 0.1895F = 0.1895 × 100 = 18.95 moles

The composition of the distillate can then be rewritten as

Butane = 0.95D moles = 0.95×18.95 = 18 0025 moles

Pentane = 0.04D moles = 0.04×18.95 = 0.758 moles

Hexane = 0.01D moles = 0.01×18.95 = 0.1895 moles

From the overall balance,

100 = B + D

B = 100 - D = 100 - 18.95 = 81.05 moles

Hence, the amount of each component in the Bottoms now will be the amount in the feed minus the amount in the distillate

Butane

20 - 18.0025 = 1.9975 moles

Percent compositon = (1.9975/81.05) = 0.0246 = 2.46%

Pentane

35 - 0.758 = 34.242 moles

Percent composition = (34.242/81.05) = 0.4225 = 42.25%

Hexane

45 - 0.1895 = 44.8105 moles

Percent composition = (44.8105/81.05) = 0.5529 = 55.29%

Please note that, irrespective of the assumed basis for the total number of moles in the feed, the molar composition of the bottoms obtained, remains the same.

Hope this Helps!

You might be interested in
Has occurred.
Lapatulllka [165]

Answer:

Tearing a piece of paper in hlf boiling water

Explanation:

8 0
3 years ago
How can I balance this equation? TELL ME HOW you did it and all the steps and you will be the brainliest.
lianna [129]

Answer:

3 CH3CH2OH + 4 H2CrO4 + 6 H2SO4 --> 3 CH3COOH + 2 Cr2(SO4)3 + 13 H2O

Explanation:

To balance, start of with the groups that are common on both sides of the reaction equation;

In this case, these are the SO4 groups treating them as single units;

There are 3 on the right side and 1 on the left side, so we put 3 in front of the H2SO4 to balance this first;

Next, deal with the Cr, there are 2 Cr on the right side and 1 on the other side, so we put a 2 in front of the H2CrO4 to balance that;

Thirdly, we notice the C are already balanced as there are 2 on each side so this is fine;

Lastly, we can deal with the O and H;

Bearing in mind the numbers that are in front of the molecules now from prior balancing, there are 9 O and 16 H on the left side and 3 O and 5 H on the right;

7 H2O on the right side would balance the O, but gives us 18 H, which is 2 too many H;

If we were to put 2 in front of the two organic molecules (the ones with C) on either side, we would balance the O by having 6 H2O, but this gives 2 fewer H than necessary;

In order for the H to balance, we need to have 13/2 (or 6.5) H2O, which means we need 3/2 (or 1.5) in front of each organic molecule;

Since, it is not sensible to have 13/2 water molecules or 3/2 organic molecules, we can just multiply everything by 2;

Thus we end up with:

3 CH3CH2OH + 4 H2CrO4 + 6 H2SO4 --> 3 CH3COOH + 2 Cr2(SO4)3 + 13 H2O

Rules of thumb:

- When there are common chemical groups (e.g. SO4) on both sides of a reaction equation, treat them as single units

- Start of with balancing these common groups

- Thereafter, balance the atoms that appear in only one reactant and one product

- Proceed to balance the atoms that appear in more than one reactant or product

- Typically, you should deal with the O and H last

4 0
3 years ago
An ion is an atom with a net electrical charge due to ______.
Serga [27]
<span>the loss of one or more electrons & the addition of one of more electrons</span>
7 0
3 years ago
Read 2 more answers
What is the force of an object with a mass of 12 kg and an acceleration of 4 m/s2?
makvit [3.9K]

Answer:

48 N

Explanation:

f=ma (from Newton's second law of motion)

3 0
2 years ago
Write the formula: carbon hexabromide
KATRIN_1 [288]

Answer: C2Br6

Explanation:

8 0
3 years ago
Other questions:
  • If you used the method of initial rates to obtain the order for no2, predict what reaction rates you would measure in the beginn
    10·1 answer
  • In the ground state, an atom of which element has two valence electrons?
    13·2 answers
  • Which of the following is a halogen?
    7·2 answers
  • In a given chemical reaction, the energy of the products is less than the energy of the reactants. Which statement is true for t
    10·1 answer
  • How does a catalyst influence a chemical reaction.
    5·2 answers
  • Methane is gas that is found in small quantities in Earth's atmosphere. Methane is the simplest hydrocarbon, consisting of one c
    15·1 answer
  • What is the speed of a jet that flies 3200 miles in 20 hours?
    11·1 answer
  • How many liters of oxygen gas, at STP, are produced by the decomposition of 0.605 moles of potassium chlorate? 2KClO3 ➞ 2KCl + 3
    8·1 answer
  • In pure metals, the atoms are arranged in orderly _______<br><br> and _______
    11·1 answer
  • A 29.0-g sample of water at 290. K is mixed with 51.0 g water at 300. K. Calculate the final temperature of the mixture assuming
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!