Answer: D
If the fog disappears when the Sun comes out, then this is an example of condensation because:
the Sun actually dries up the fog, and it makes it into higher clouds.
Hope this helps you!
Answer:
11.48 m
Explanation:
A brick starts from rest and gains a speed of 15 m/s and accelerates at 9.8 m/s^2
u = 0
v= 15
a= 9.8
s= ?
V^2 = U^2 + 2as
15^2 = 0^2 + 2 × 9.8×s
225= 19.6s
s= 225/19.6
s = 11.48m
Hence the brick will fall 11.48 m
Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules
Answer:
As the wavelength of an electromagnetic wave _decrease__ the frequency of the wave _increase_______.
Explanation:
What is the relationship between frequency and wavelength?
Wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength.
That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave. The equation that relates wavelength and frequency is:
V= fλ
where v= velocity
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
For electromagnetic radiation, the speed is equal to the speed of light, c, and the equation becomes:
C= fλ
where c= Speed of light
f= frequency
λ = wavelength
⇒ f = v/λ
also f ∝ 1/λ
Answer:
Angular acceleration, 
Explanation:
It is given that,
Mass of the solid sphere, m = 245 g = 0.245 kg
Diameter of the sphere, d = 4.3 cm = 0.043 m
Radius, r = 0.0215 m
Force acting at a point, F = 0.02 N
Let
is its angular acceleration. The relation between the angular acceleration and the torque is given by :

I is the moment of inertia of the solid sphere
For a solid sphere, 





So, its angular acceleration is
. Hence, this is the required solution.