So as you may know atoms are neutral because the number of protons (+ charge) and the number of electrons( - charge) are the same so they cancel out. When a valence electron leaves an atom it will have a +1 charge because there is one less negative than positives or there is one more positive than negatives since a negative electron left. If a valence electron is added a -1 charge because there is now one more negative than positive!!!
hope that helps!!
Answer:
The astronomical model created and published by Nicholas Copernicus in the year 1543 is called Copernican heliocentrism. The model set the Sun in immobile position near the center of the solar system with Earth, as well as the other planets, spherical, epicycled and at consistent frequencies around it.
It is about 100oC at a pressure of 1.1 atmosphere. Hope this helps.
The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129