The angular velocity of the wheel depends on the mass, radius and the
mode of rotation of the wheel (with or without slipping).
- The angle velocity at the bottom of the incline, ω ≈ <u>4.43 rad/sec</u>
Reasons:
The given parameters are;
Radius of the wheel, r = 2.0 m
Height of the incline, h = 8.0 m
Required:
Angular velocity of the wheel at the bottom of the incline.
Solution:
The potential energy of the wheel at the top of the hill, P.E. = m·g·h
![Sum \ of \ the \ kinetic \ energy \ of \ the \ wheel, \ K.E. = \mathbf{\displaystyle \frac{1}{2} \cdot m \cdot v^2 + \frac{1}{2} \cdot I \cdot \omega ^2}](https://tex.z-dn.net/?f=Sum%20%5C%20of%20%5C%20%20the%20%5C%20%20kinetic%20%20%5C%20energy%20%20%5C%20of%20%20%5C%20the%20%5C%20%20wheel%2C%20%20%5C%20K.E.%20%3D%20%5Cmathbf%7B%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20m%20%5Ccdot%20v%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20I%20%5Ccdot%20%5Comega%20%5E2%7D)
Where;
v = The translational velocity of the wheel = ω·r
I = The moment of inertia of the wheel = m·r²
Therefore'
![Sum \ of \ K.E. = \displaystyle \frac{1}{2} \cdot m \cdot (\omega \cdot r)^2 + \frac{1}{2} \cdot m \cdot r^2 \cdot \omega ^2 = \mathbf{m \cdot r^2 \cdot \omega^2}](https://tex.z-dn.net/?f=Sum%20%5C%20of%20%5C%20%20%20K.E.%20%3D%20%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20m%20%5Ccdot%20%28%5Comega%20%5Ccdot%20r%29%5E2%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20m%20%5Ccdot%20r%5E2%20%5Ccdot%20%5Comega%20%5E2%20%3D%20%20%5Cmathbf%7Bm%20%5Ccdot%20r%5E2%20%5Ccdot%20%20%5Comega%5E2%7D)
At the bottom of the hill, the potential energy is converted to kinetic energy
Therefore;
P.E. = Sum of K.E.
m·g·h = m·r²·ω²
g·h = r²·ω²
![\displaystyle \omega = \sqrt{ \frac{g \cdot h}{r^2} } = \mathbf{ \frac{\sqrt{g \cdot h} }{r}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Comega%20%3D%20%5Csqrt%7B%20%5Cfrac%7Bg%20%5Ccdot%20h%7D%7Br%5E2%7D%20%7D%20%3D%20%5Cmathbf%7B%20%5Cfrac%7B%5Csqrt%7Bg%20%5Ccdot%20h%7D%20%7D%7Br%7D%7D)
Where;
g = Acceleration due to gravity ≈ 9.81 m/s²
Therefore;
![\displaystyle \omega = \frac{\sqrt{9.81 \times 8} }{2} \approx \mathbf{ 4.43}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Comega%20%3D%20%5Cfrac%7B%5Csqrt%7B9.81%20%5Ctimes%208%7D%20%7D%7B2%7D%20%5Capprox%20%5Cmathbf%7B%204.43%7D)
- The angular velocity of the of the wheel at the bottom of the incline, ω ≈ 4.43 rad/sec
Learn more about the law of conservation of energy here:
brainly.com/question/4723473
brainly.com/question/2292427
brainly.com/question/816294