Given that,
Mass of the stone, m = 400 g = 0.4 kg
Initial speed, u = 20 m/s
It is climbed to a height of 12 m.
To find,
The work done by the resistance force.
Solution,
Let v is the final speed. It can be calculated by using the conservation of energy.
Work done is equal to the change in kinetic energy. It can be given as follows :
So, the required work done is 32.99 J.
Explanation:
Given that,
(a) Speed,
Mass of the electron,
Mass of the proton,
The wavelength of the electron is given by :
The wavelength of the proton is given by :
(b) Kinetic energy,
The relation between the kinetic energy and the wavelength is given by :
Hence, this is the required solution.
Thank you for posting your question here at brainly. But your question seems incomplete. I will assume you based the situation below:
<span>An electrons moves at 2.0x10^6 m/s through a region in which there is a magnetic field of unspecified direction and magnitude 7.4x10^-2 T.
The </span> largest possible magnitude of the acceleration of the electron due to the magnetic field is <span>= 2.6 × 10 ¹⁶ m / s ²</span>
Answer:
Yes
Explanation:
Given that the battery is the same the PD ( potential difference ) in the circuit will also be the same likewise the flow of charge in the circuit,
Hence the same amount of charge flow is delivered to any circuit.
attached below are examples
Answer:
Friction
Explanation:
As the toy cars rolls away, more friction is created. The more friction there is, the more friction on surface rubs against another which creates friction which in-term slows it down. Hope this helps.