We have:
Total Energy: KE + GPE
KE (Kinetic Energy) =

GPE (Gravitational Potential Energy) =

Data:
m (mass) = 2.0 Kg
v (speed) = 10 m/s
h (height) = 50 m
Use: g (gravity) = 10 m/s²
Formula:
Total Energy: KE + GPE

Solving:





In the real universe, no black holes contain singularities. In general, singularities are the non-physical mathematical result of a flawed physical theory.
Answer:
minimum angle is 128.69°
Explanation:
given data
player velocity with respect ground v1 = 3.5 m/s
ball velocity with respect himself v2 = 5.6 m/s
to find out
smallest angle
solution
we know ball velocity with respect field will be
ball velocity = v1 +v2
ball velocity = 3.5 + 5.6 = 9.1m/s
we consider angle that player hit ball is θ
then by as per figure triangle
cosθ = 
cosθ = 
θ = 51.31
so minimum angle is 180 - 51.31 = 128.69°
Answer:
7/16 <em>is </em><em>the </em><em>probability </em><em>of </em><em>given </em><em>querty</em>
Answer:

Explanation:
The total force on the particle is given by

Then, by replacing we have:
![q\vec{v}\ X \vec{B}=q[7\hat{k}-9\hat{j}-\hat{k}]\\\\q\vec{E}=q[5\hat{i}-\hat{j}-2\hat{k}]\\\\\vec{F}=(9.61*10^{-19}C)[(7+9)\hat{i}+(-9-1)\hat{j}+(-1-2)\hat{k}]\\\\\vec{F}=(1.537*10^{-17}\hat{i}-9.61*10^{-19}\hat{j}-2.883*10^{-18}\hat{k})N](https://tex.z-dn.net/?f=q%5Cvec%7Bv%7D%5C%20X%20%5Cvec%7BB%7D%3Dq%5B7%5Chat%7Bk%7D-9%5Chat%7Bj%7D-%5Chat%7Bk%7D%5D%5C%5C%5C%5Cq%5Cvec%7BE%7D%3Dq%5B5%5Chat%7Bi%7D-%5Chat%7Bj%7D-2%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%289.61%2A10%5E%7B-19%7DC%29%5B%287%2B9%29%5Chat%7Bi%7D%2B%28-9-1%29%5Chat%7Bj%7D%2B%28-1-2%29%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%281.537%2A10%5E%7B-17%7D%5Chat%7Bi%7D-9.61%2A10%5E%7B-19%7D%5Chat%7Bj%7D-2.883%2A10%5E%7B-18%7D%5Chat%7Bk%7D%29N)
where the cross product can be made with the determinant method.
Hope this helps!!