Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.
The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
To answer the question, we need to know what polarization of light is.
<h3>What is polarization of light?</h3>
This is when the electric field vector of light is oscillating in one plane.
- Now for light of intensity I' which is initially unpolarized, its intensity after polarization is I = 1/2I'.
- Also, for light initially polarized, its intensity after polarization is I"' = I"cos²Ф where Ф is the angle between the initial direction and the direction of polarization.
<h3>Intensity of light through each polarized filter</h3>
Given that we have 7 polarizing filters, each rotated 17° cw with respect to the previous filter.
So, since the light is initially unpolarized,
- The intensity through the first polarizing filter is I₁ = 1/2I₀ where I₀ is the initial intensity.
- The intensity through the second polarizing filter is I₂ = I₁cos²17°= 1/2I₀cos²17°
- The intensity through the third polarizing filter is I₃ = I₂cos²17° = 1/2I₀cos⁴17°
- The intensity through the fourth polarizing filter is I₄ = I₃cos²17° = 1/2I₀cos⁶17°
- The intensity through the fifth polarizing filter is I₅ = I₄cos²17° = 1/2I₀cos⁸17°
- The intensity through the sixth polarizing filter is I₆ = I₅cos²17° = 1/2I₀cos¹⁰17°
- The intensity through the seventh polarizing filter is I₇ = I₆cos²17° = 1/2I₀cos¹²17°.
<h3>The ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity</h3>
Since I₇ is the last intensity I₇ = It = 1/2I₀cos¹²17°.
So, It/I₀ = 1/2cos¹²17°
= 1/2(0.9563)¹²
= 1/2 × 0.5850
= 0.2925
So, the ratio of the intensity between light intensity that emerges from the last filter and unpolarized light of intensity, I₀ is It/I₀ = 0.2925
Learn more about intensity of polarized light here:
brainly.com/question/25402491
In this case the rubber raft has horizontal and vertical motion.
Considering vertical motion first.
We have displacement
, u = Initial velocity, t = time taken, a = acceleration.
In vertical motion
s = 1960 m, u = 0 m/s, a = 9.81 

So raft will take 20 seconds to reach ground.
Now considering horizontal motion of raft
u = 109 m/s, t = 20 s, a = 0
So 
So shipwreck was 2180 meter far away from the plane when the raft was dropped.
might be 140mph, so that is a guess that i just made so plz let me know if im wrong or correct
Answer:
A 0.25 kg beach ball rolling at a speed of 7 m/s collides with a heavy exercise ball at rest. The beach ball bounces straight back with a speed of 4 m/s. That is the change in momentum of the beach ball? What is the impulse exerted on the beach ball? What is the impulse exerted on the exercise ball?
Explanation:
the answer is impulse grenade from fortnite