Answer:
Explanation:
a) the speed increment of the hammer as it drops past the first window, is greater than that of the speed of the hammer as it drops past the second window. This can also be translated as saying that the hammer spent more time at the second window.
b) III
The best answer would be answer III, The hammer spends more time dropping past window 1, which I had already included in my explanation in (a) above.
Answer:
Speed of the helium after collision = 246 m/s
Explanation:
Given that
Mass of helium ,m₁ = 4 u
u₁=598 m/s
Mass of oxygen ,m₂ = 32 u
u₂ = 401 m/s
v₂ =445 m/s
Given that initially both are moving in the same direction and lets take they are moving in the right direction.
Speed of the helium after collision = v₁
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = m v
m₁u₁+m₂u₂ = m₁v₁+m₂v₂
598 x 4 + 32 x 401 = 4 x v₁+ 32 x 445
v₁ = 246 m/s
Speed of the helium after collision = 246 m/s
Answer:
d= 1.56 m
Explanation:
In order to have a constructive interference, the path difference between the sources of the sound, must be equal to an even multiple of the semi-wavelength, as follows:
⇒ d = d₂ - d₁ = 2n*(λ/2)
The minimum possible value for this distance, is when n=1, as it can be seen here:
dmin = λ
In any wave, there exists a fixed relationship between the wave speed, the frequency and the wavelength:
v = λ*f
If v = vsound = 343 m/s, and f = 220 1/s, we can solve for λ:
λ =
⇒ dmin =λ = 1.56 m