1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
7

Evaluate: f(x) = f(g(3)), wheref(x)= 3x-2 and g(x)= x^2-4

Mathematics
2 answers:
dem82 [27]3 years ago
7 0

Answer:

13

Step-by-step explanation:

g(3)=3^2-4

g(3)=9-4

g(3)=5

f(x)=f(5)

f(5)=3(5)-2

f(5)=15-2

f(5)=13

dimulka [17.4K]3 years ago
4 0

Hello from MrBillDoesMath!

Answer:  13

Discussion:

Evaluate f(g(3)).

g(3) = 3^2 -4 = 5 so

f(g(3)) = f(5) = 3*5-2 = 15 -2 = 13


Thank you,

MrB


You might be interested in
T - 6.2 < 4 help me please
enyata [817]

Answer:

t < 10.2

Step-by-step explanation:

Step 1: Add 6.2 to both sides.

  • t - 6.2 + 6.2 < 4 + 6.2
  • t < 10.2

Therefore, the answer is t < 10.2.

Have a lovely rest of your day/night, and good luck with your assignments! ♡

6 0
3 years ago
Turning off the water while brushing your saves 379 centimetres of water .How many litres of water can you save if you turn off
Scrat [10]
First you need to find out how many cm of water that will be saved after brushing your teeth 3 times.

379 x 3 = 1137

Next you need the convert the cm to liters. You do this by dividing the cm total by 1000.

1137 / 1000 = 1.137

So you would save 1.137 liters of water while brushing your teeth 3 times.

Hope this helps!!
6 0
3 years ago
Read 2 more answers
A right triangle has legs of lengths 8 and 15.
nalin [4]

Answer:

15

Step-by-step explanation:

please give me brailiest

3 0
3 years ago
Explain how to model the problem with algebra tiles and
gregori [183]

Answer:someone answer the question already

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Someone please help I will do anything please help
    5·2 answers
  • Describe a real world situation that can be modeled by the equation 8.35x=4.25x+36.90
    5·1 answer
  • Sheila is going to divide a 36 inch piece of ribbon into 5 equal pieces she says each piece will be 7 inches long what is Sheila
    6·2 answers
  • How to work the problem 44,756÷167
    9·1 answer
  • a parking garage charges $1.12 for the first hour and 0.50 for each additional hour. what is the maximum length of time Tom can
    14·1 answer
  • What is the value of 3√4096? <br> A. 512 <br> B. 64 <br> C. 16 <br> D. 8
    7·1 answer
  • Need help with this..
    12·1 answer
  • it takes perry 11 minutes to sweep a porch. Darryl can sweep the same porch in 10 minutes. Find how long it would take them if t
    9·2 answers
  • HELP ME PLEASE SHOW HOW TO SOLVE THIS THANKS
    14·1 answer
  • ANSWER PART B
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!