The diagram of the lawn and the shed is shown below.
The area of the lawn needed to be mowed equals to the area of the yard minus the area of the shed
The area of the yard =

The area of the shed =

The area of the lawn =

The area of the lawn =

The area of the lawn =
Answer:
E
Step-by-step explanation:
Solution:-
- We are to investigate the confidence interval of 95% for the population mean of walking times from Fretwell Building to the college of education building.
- The survey team took a sample of size n = 24 students and obtained the following results:
Sample mean ( x^ ) = 12.3 mins
Sample standard deviation ( s ) = 3.2 mins
- The sample taken was random and independent. We can assume normality of the sample.
- First we compute the critical value for the statistics.
- The z-distribution is a function of two inputs as follows:
- Significance Level ( α / 2 ) = ( 1 - CI ) / 2 = 0.05/2 = 0.025
Compute: z-critical = z_0.025 = +/- 1.96
- The confidence interval for the population mean ( u ) of walking times is given below:
[ x^ - z-critical*s / √n , x^ + z-critical*s / √n ]
Answer: [ 12.3 - 1.96*3.2 / √24 , 12.3 + 1.96*3.2 / √24 ]
Answer:
The length of the line segment UV is 76 units
Step-by-step explanation:
In a triangle, the line segment joining the mid-points of two sides is parallel to the third side and equal to half its length
In Δ ONT
∵ U is the mid-point of ON
∵ V is the mid-point of TN
→ That means UV is joining the mid-points of two sides
∴ UV // OT
∴ UV =
OT
∵ UV = 7x - 8
∵ OT = 12x + 8
∴ 7x - 8 =
(12x + 8)
→ Multiply the bracket by 
∵
(12x + 8) =
(12x) +
(8) = 6x + 4
∴ 7x - 8 = 6x + 4
→ Add 8 to both sides
∴ 7x - 8 + 8 = 6x + 4 + 8
∴ 7x = 6x + 12
→ Subtract 6x from both sides
∴ 7x - 6x = 6x - 6x + 12
∴ x = 12
→ Substitute the value of x in the expression of UV to find it
∵ UV = 7(12) - 8 = 84 - 8
∴ UV = 76
∴ The length of the line segment UV is 76 units