A party rental company has chairs and tables for rent. The total cost to rent 3 chairs and 8 tables is $58. The total cost to re
nt 5 chairs and 2 tables is $23. What is the cost to rent each chair and each table?
1 answer:
Answer:
Equations::
4c + 8t = 58
2c + 3t = 23
----------------
Modify for elimination:
4c (4c*1) + 8t (8t*1)= 58
4c (2c*2) + 6t (3t*2)= 46
---------------------
Subtract and solve for "t":
2t (8t-6t) = 12
t = $6 (cost of one table)
-----
Solve for "c":
2c + 3t = 23
2c + 18 = 23
2c = 5
c = $2.50 (cost of one chair)
You might be interested in
Do we need to add them?
What are we doing with this information?
Step-by-step explanation:
Hello there!
Just solve for x by combining like terms:
2x+18=20
2x=20-18
2x=2
x=1
:)
Answer:
the answer is 48, try using this site called mat- way
Step-by-step explanation:
Answer:
P=2L+2W
P=2L+2W
P-2W=2L
P-2W/2=L
L=P-2W÷2
Answer:
1.55555555
Step-by-step explanation:
7 - 2 1/3
4 2/3
4 2/3 /3
=1.5555555