1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
2 years ago
9

A concrete stepping stone neasures 20 square inches. what is the area of 30 such stones?

Mathematics
1 answer:
sattari [20]2 years ago
3 0
If the area of one is 20, that the area of 30 is 20*30=600 square inches.
You might be interested in
What is an efficient way to study for a test/exam
igomit [66]
Take 2 hours out of your day to look over notes/ work on problems, tutoring also helps. Put yourself in a room that's silent thay way no distractions also make sure you take 5 minutes breaks so your brain doesn't overheat
5 0
2 years ago
Read 2 more answers
What is an equation for the line that passes through the coordinates (2, 0) and (0, 3)?
alexdok [17]
Answer:
Not sure if this is correct but I hope this helps :)

8 0
3 years ago
Keli has 26 roses and 73 carnations. She will put an assortment of 6 flowers in each vase. How many vases will she need for her
Irina18 [472]
Add 26 and 73 = 99 then divide 99 by 6 = 16.5 which is 17 vases
8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
A coyote can run up to 43 miles per hour while a rabbit can run up to 35 miles per hour.write two equivalent expression and then
yaroslaw [1]
D=s*t
distaance=speed times time

cd=coyote distance*time=ds*dt
rd=rabbit diatance*time=rs*rt

given
t=6 for all, so dt=rt=6

and ds=43
rs=35


cd=43*6=258miles
rd=35*6=210miles

how much more?
258-210=48

48 more miles
5 0
2 years ago
Other questions:
  • Eduardo thinks of a number between 1 and 20 that has exactly 5 factors. What number is he thinking of?
    9·2 answers
  • Plz help with this question
    10·2 answers
  • Suppose you invest $400 at an annual interest rate of 7.6% compounded continuously. How much will you have in the account after
    7·1 answer
  • What is the solution to this equation 2(x-3)=2x+5
    14·2 answers
  • One more math question for the night. please show work :0
    7·2 answers
  • X+2y=-4<br> find slope:<br> x-intercept:<br> y-intercept:
    15·2 answers
  • PLZZ HURRY
    8·2 answers
  • HELP PLEEEAAAASSSEEEE!!!!
    15·1 answer
  • What does 5.46 x 12.9 equal?
    8·1 answer
  • If f(x) = 5x - 7, what is {3)?<br> O A. 22<br> O B. 2<br> O c. 1<br> • D. 8
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!