A pure substance has "one set of universal properties". This means they have some of the universal properties in common.
<h3>The definition of universal property</h3>
A characteristic that describes some structures up to an isomorphism is known as a universal property in mathematics, more specifically in category theory.
As a result, independent of the construction technique used, some objects can be described using universal properties. For example, one can define polynomial rings as derived from the field of their coefficients, rational numbers as derived from integers, real numbers as derived from integers, and rational numbers as derived from real numbers.
All of these definitions can be made in terms of universal properties. In particular, the concept of universal property offers a simple demonstration of the equality of any real number structures, requiring only that they satisfy the same universal property.
<h3>
What is the universal property of all substances?</h3>
Diamagnetism is a feature that all substances share.
To learn more about Diamagnetism click on the link below:
brainly.com/question/22078990
#SPJ9
It gains or loses electrons to become like the Noble gases having 8 valence electrons to become the most stable.
Answer:
Explanation:
Primary and secondary succession occur after both human and natural events that cause drastic change in the makeup of an area. Primary succession occurs in areas where there is no soil and secondary succession occurs in areas where there is soil.
In primary succession, newly exposed or newly formed rock is colonized by living things for the first time. In secondary succession, an area previously occupied by living things is disturbed—disrupted—then recolonized following the disturbance.
Hope this helped :)
-<em>Akito</em>
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C