Answer:
No, It will mean lot of rains but not every day
Explanation:
In wet tropical climates, the high clouds trap a lot of heat while balancing incoming and outgoing heat energy. When the number of heat trapping cloud remains very low, then the unstable cool air above the clouds cause lot of rain.
Hence, there will rain frequently but no everyday
Answer:
1-(tert-butoxy)-2-methylpropane
Note: there is a mistake in formula, the correct formula is (CH₃)₂-CH-CH₂-O-C(CH₃)₃ not (CH₃)₂-CH-CH₂-O(CH₃)₃, because oxygen is a divalent compound.
Explanation:
<em>Structural formula is attached</em>
IUPAC naming rules
1. start numbering the chain from the functional group. In this compound we start from oxygen side.
2. Here we can see that at position 1 there is an oxy group along with a tertiary carbon having three methyl groups. So we write it as 1-tert-butoxy. Which means that there is a methoxy group at position 1 along with a tertiary carbon.
3. At position 2 we can see that there is a methyl group attached to the main chain, so we write it as 2-methyl.
4. Now we count the total number of carbons in the main chain. As we can see that there are 3 carbons in the remaining or parent chain, so we write it as propane
5. So the IUPAC name of the compound will be 1-(tert-butoxy)-2-methylpropane
Answer:
el volumen es igual a masa decidida por densidad
Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j