1 and 2 are equations and 3 is a solution
Solve algebrically 3x - 4y = -24 and x + 4y = 8 is x = -4 and y = 3
<u>Solution:</u>
We have been given two equations which are as follows:
3x - 4y = -24 ----- eqn 1
x + 4y = 8 -------- eqn 2
We have been asked to solve the equations which means we have to find the value of ‘x’ and ‘y’.
We rearrange eqn 2 as follows:
x + 4y = 8
x = 8 - 4y ------eqn 3
Now we substitute eqn 3 in eqn 1 as follows:
3(8 - 4y) -4y = -24
24 - 12y - 4y = -24
-16y = -48
y = 3
Substitute "y" value in eqn 3. Therefore the value of ‘x’ becomes:
x = 8 - 4(3)
x = 8 - 12 = -4
Hence on solving both the given equations we get the value of x and y as -4 and 3 respectively.
61 is the composite Number your welcome
Answer:
ok the second one the answer is 66
Step-by-step explanation:
- we get that <em><u>x</u></em><em><u>=</u></em><em><u>1</u></em><em><u>8</u></em><em><u>0</u></em><em><u>/</u></em><em><u>4</u></em><em><u>8</u></em><em><u>/</u></em><em><u>2</u></em><em><u>=</u></em><em><u>6</u></em><em><u>6</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>wanted</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>just</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>thx</u></em><em><u> </u></em>