Step-by-step explanation:
please mark me as brainlest
So basically, the first question after the word problem is asking you to write an equation to represent the value of Mama's car after a certain amount of years (t). Since the value of her car decreases by 3% each year, you could multiply 3% by the original value of her car, to find what 3% is, OR you could subtract 19,400 (the value of her car after 1 year) from 20,000 INSTEAD of multiplying 20,000 by 3%.
Equation: value=20,000 - 600t
To answer the next question, just plug it into the equation you created.
500<20,000 - 600t
-19500< -600t
32.5>t
Final Answer: It would take at least 32 and 1/2 years for the value of Mama's car to be less than $500.
Hope this helps!! :)
Looks like a badly encoded/decoded symbol. It's supposed to be a minus sign, so you're asked to find the expectation of 2<em>X </em>² - <em>Y</em>.
If you don't know how <em>X</em> or <em>Y</em> are distributed, but you know E[<em>X</em> ²] and E[<em>Y</em>], then it's as simple as distributing the expectation over the sum:
E[2<em>X </em>² - <em>Y</em>] = 2 E[<em>X </em>²] - E[<em>Y</em>]
Or, if you're given the expectation and variance of <em>X</em>, you have
Var[<em>X</em>] = E[<em>X</em> ²] - E[<em>X</em>]²
→ E[2<em>X </em>² - <em>Y</em>] = 2 (Var[<em>X</em>] + E[<em>X</em>]²) - E[<em>Y</em>]
Otherwise, you may be given the density function, or joint density, in which case you can determine the expectations by computing an integral or sum.
Answer:
(f + g)(x) = 12x² + 16x + 9 ⇒ 3rd answer
Step-by-step explanation:
* Lets explain how to solve the problem
- We can add and subtract two function by adding and subtracting their
like terms
Ex: If f(x) = 2x + 3 and g(x) = 5 - 7x, then
(f + g)(x) = 2x + 3 + 5 - 7x = 8 - 5x
(f - g)(x) = 2x + 3 - (5 - 7x) = 2x + 3 - 5 + 7x = 9x - 2
* Lets solve the problem
∵ f(x) = 12x² + 7x + 2
∵ g(x) = 9x + 7
- To find (f + g)(x) add their like terms
∴ (f + g)(x) = (12x² + 7x + 2) + (9x + 7)
∵ 7x and 9x are like terms
∵ 2 and 7 are like terms
∴ (f + g)(x) = 12x² + (7x + 9x) + (2 + 7)
∴ (f + g)(x) = 12x² + 16x + 9
* (f + g)(x) = 12x² + 16x + 9