Answer:
68
Step-by-step explanation:
too easy
Hey! How are you? My name is Maria, 19 years old. Yesterday broke up with a guy, looking for casual sex.
Write me here and I will give you my phone number - *pofsex.com*
My nickname - Lovely
Answer:
b ≈ 25.6
Step-by-step explanation:
From the figure attached,
By applying tangent rule in the given triangle,
tan(32°) = 
tan(32°) = 
b = 
b = 
b = 25.605
b ≈ 25.6
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Multiple Roots
- Standard Form: ax² + bx + c = 0
- Quadratic Formula:

<u>Algebra II</u>
- Imaginary Root <em>i</em> = √-1
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
2x² + x + 67 = 0
<em>a</em> = 2
<em>b</em> = 1
<em>c</em> = 67
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Quadratic Formula]:

- Multiply:

- [√Radical] Evaluate exponents:

- [√Radical] Multiply:

- [√Radical] Subtract:

- [√Radical] Simplify:

Answer:
The statement is true is for any
.
Step-by-step explanation:
First, we check the identity for
:



The statement is true for
.
Then, we have to check that identity is true for
, under the assumption that
is true:
![(1^{2}+2^{2}+3^{2}+...+k^{2}) + [2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%281%5E%7B2%7D%2B2%5E%7B2%7D%2B3%5E%7B2%7D%2B...%2Bk%5E%7B2%7D%29%20%2B%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)}{3} +[2\cdot (k+1)-1]^{2} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%7D%7B3%7D%20%2B%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)
![\frac{k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot [2\cdot (k+1)-1]^{2}}{3} = \frac{(k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1]}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%2B3%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5E%7B2%7D%7D%7B3%7D%20%3D%20%5Cfrac%7B%28k%2B1%29%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29-1%5D%5Ccdot%20%5B2%5Ccdot%20%28k%2B1%29%2B1%5D%7D%7B3%7D)

![(2\cdot k +1)\cdot [k\cdot (2\cdot k -1)+3\cdot (2\cdot k +1)] = (k+1) \cdot (2\cdot k +1)\cdot (2\cdot k +3)](https://tex.z-dn.net/?f=%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%5Bk%5Ccdot%20%282%5Ccdot%20k%20-1%29%2B3%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5D%20%3D%20%28k%2B1%29%20%5Ccdot%20%282%5Ccdot%20k%20%2B1%29%5Ccdot%20%282%5Ccdot%20k%20%2B3%29)



Therefore, the statement is true for any
.