What is probability rolling a number greater than 4?
The only numbers there are is 5 and 6.
That means that there are 2 outcomes out of 6 total outcomes.
That would be 2/6.
Divide the the top and bottom by 2.
In simplest form it would be 1/3.
2/6=1/3
The answer is 1/3. The probability of throwing a number greater than 4 is 1/3.
Answer:
$172,984.44
Step-by-step explanation:
We can use the formula
to compute the final amount
Here P is the principal amount, the original deposit = $25,000
r is the annual interest rate = 6.5% = 0.065 in decimal
n is the number of times the compounding takes place. Here it is quarterly so it is 4 times a year
t is the number of time periods ie 30 years
A is the accrued amount ie principal + interest
Computing different components,



Therefore

Answer:
0.0838 (8.62%)
Step-by-step explanation:
defining the event G= an out-of-state transaction took place in a gasoline station , then the probability is
P(G) = probability that the transaction is fraudulent * probability that took place in a gasoline station given that is fraudulent + probability that the transaction is not fraudulent * probability that took place in a gasoline station given that is not fraudulent = 0.033 * 0.092 + 0.977 * 0.034 = 0.0362
then we use the theorem of Bayes for conditional probability. Defining also the event F= the transaction is fraudulent , then
P(F/G)=P(F∩G)/P(G) = 0.033 * 0.092 /0.0362 = 0.0838 (8.62%)
where
P(F∩G)= probability that the transaction is fraudulent and took place in a gasoline station
P(F/G)= probability that the transaction is fraudulent given that it took place in a gasoline station