Answer:
From the graph attached, we know that
by the corresponding angle theorem, this theorem is about all angles that derive form the intersection of one transversal line with a pair of parallels. Specifically, corresponding angles are those which are placed at the same side of the transversal, one interior to parallels, one exterior to parallels, like
and
.
We also know that, by definition of linear pair postulate,
and
are linear pair. Linear pair postulate is a math concept that defines two angles that are adjacent and for a straight angle, which is equal to 180°.
They are supplementary by the definition of supplementary angles. This definition states that angles which sum 180° are supplementary, and we found that
and
together are 180°, because they are on a straight angle. That is, 
If we substitute
for
, we have
, which means that
and
are also supplementary by definition.
Answer:
- an = 3(-2)^(n-1)
- 3, -6, 12, -24, 48
Step-by-step explanation:
These variable names, a1, r, are commonly used in relationship to geometric sequences. We assume you want the terms of a geometric sequence with these characteristics.
a1 is the first term. r is the ratio between terms, so is the factor to find the next term from the previous one.
a1 = 3 (given)
a2 = a1×r = 3×(-2) = -6
a3 = a2×r = (-6)(-2) = 12
a4 = a3×r = (12)(-2) = -24
a5 = a4×r = (-24)(-2) = 48
The first 5 terms are 3, -6, 12, -24, 48.
__
The explicit formula for the terms of a geometric sequence is ...
an = a1×r^(n -1)
Using the given values of a1 and r, the explicit formula for this sequence is ...
an = 3(-2)^(n -1)
9×8-29+30/15-15 equals 30
Answer:
Step-by-step explanation:
I would say the answer is 6
6 + 6 than times by two is 24