1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
3 years ago
5

Miguel run faster than 19 of his teammates what percent of the team is slower than Miguel

Mathematics
1 answer:
nika2105 [10]3 years ago
4 0

Answer:

he is faster than 95% of his team

Step-by-step explanation:

To finde this

First: Add Miguel to his 19 people equals 20 people

Next divide the 19/20

Providing the answer 0.95

to get the percentage multiply the decimal by 100: 0.95*100

= 95%

You might be interested in
Give another name for Plane L. SELECT ALL THAT APPLY. K P S T L e M N O U R Q c d​
tigry1 [53]

Answer:

Plane MNO

Plane PST

Step-by-step explanation:

The plane L can be given another name using uppercase letters only. The plane will require three letters name so that it represents a complete angle. The names can be assigned using the point to point method or randomly. There are two choices available to name the current plane. Plane MNO and Plane PST are the names that can be given to plane L.

8 0
4 years ago
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
Write an equation to represent the problem
kondor19780726 [428]
If she cuts the entire rope into pieces of 1/3 meters, she will have 15 pieces

You would take 5x3 and get 15 pieces.
15 x 1/3 = 5

Hopes this Helps! :)
8 0
3 years ago
Read 2 more answers
The diagram shows a parallelogram. 4 cm 7 cm 100° Work out the area of the parallelogram. Give your answer to 2 significant figu
san4es73 [151]

Answer:

Answer:

27.44 square cm

Step-by-step explanation:

If the length of parallelogram is a and b and angle between side a and b is .

Then area of parallelogram =

Given side length 4 cm and 7 cm

angle between them = 100°

value of sin(100°) = 0.98

Thus, area of given parallelogram = 4*7*sin(100°) = 28*0.98 = 27.44

Thus, area of given parallelogram is 27.44 square cm.

Please mark me -liest

God bless

8 0
2 years ago
You want to deposit $4,000 in a bank where you earn an interest rate of 6 percent per year. What will its future value be after
natka813 [3]
6854 is the answer and if it is wrong i am sorry
6 0
3 years ago
Read 2 more answers
Other questions:
  • (08.05)
    12·1 answer
  • Find the number of real number solutions for the equation. x2 + 5x + 7 = 0
    15·1 answer
  • Determine if the bioconditional is true. if false, give a counterexample
    15·1 answer
  • Please answer the question in the attachment on circle theorems. 10 points available.
    6·1 answer
  • How many minutes are in the time interval from 1:22 pm to 5:44 pm?
    8·2 answers
  • Match the proof part 1:​
    15·1 answer
  • 2/3 if a book read and 4/5 of a book read. Who read more and how much mire
    7·1 answer
  • Help hrw ahhhhhhhh HELPPPPP
    9·1 answer
  • The burglar has been leaving behind the ladder he or she uses to climb into the houses' windows. With this evidence, you can fin
    13·1 answer
  • Simplify<br> (a+3)2 -3 (2a+3)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!