For N2(g)+3h2(g) ←→ 2nh3(g) The equilibrium system described by this equation has= 3 reactant molecule(s) and= 2 product gas molecule(s).
I hope this helped♡ I drew the realationship of variables
<span>The reaction is N2 + 3H2 -> 2NH3
So the amount of NH3 formed is 2/3 of the amount of H2 = 2/3 * 13.7 = 9.13 Liters.</span><span>The answer is 9.13
</span>
Answer:
a) pH = 4.68 (more effective)
b) pH =4.44.
Explanation:
The pH of buffer solution is obtained by Henderson Hassalbalch's equation.
The equation is:
![pH =pKa +log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3DpKa%20%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
a) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 1.4 M
[acid] = [CH₃COOH] = 1.6 M

This is more effective as there is very less difference in the concentration of salt and acid.
b) pKa of acetic acid = 4.74
[salt] = [CH₃COONa] = 0.1 M
[acid] = [CH₃COOH] = 0.2 M

Particles in a gas are far apart compared to a solid or liquid, allowing it not to have a definitive shape or volume. This also means that gases can fill any container and be easily compressed.