Given the model from the question,
- The products are: N₂, H₂O and H₂
- The reactants are: H₂ and NO
- The limiting reactant is H₂
- The balanced equation is: 3H₂ + 2NO —> N₂ + 2H₂O + H₂
<h3>Balanced equation </h3>
From the model given, we obtained the ffolowing
- Red => Oxygen
- Blue => Nitrogen
- White => Hydrogen
Thus, we can write the balanced equation as follow:
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
- Reactants: H₂ and NO
- Product: N₂, H₂O and H₂
<h3>How to determine the limiting reactant</h3>
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
3 moles of H₂ reacted with 2 moles of NO.
Therefore,
5 moles of H₂ will react with = (5 × 2) / 3 = 3.33 moles of NO
From the calculation made above, we can see that only 3.33 moles of NO out of 4 moles given are required to react completely with 5 moles of H₂.
Thus, H₂ is the limiting reactant
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
B. exothermic; leaving
Explanation:
The exothermic process releases heat, which causes the surrounding area to increase in temperature.
Your hand is releasing heat and makes the temperature of the ice cube increase, to where it melts.
<span>A substance that can be separated into two or more substances only by a chemical change is </span><span>known as a </span><span>heterogeneous</span><span> mixture</span>
Control rods are used<span> in </span>nuclear<span> reactors to </span>control<span> the fission rate of uranium and plutonium. They are composed of chemical elements such as boron, silver, indium and cadmium that are capable of absorbing many neutrons without themselves fissioning.</span>