Answer:
d. 1.2 × 1024
Explanation:
From the equation of reaction
2H2 + O2= 2H2O
i.e 2mole(4g) of hydrogen requires 1 mole(32g) of oxygen to produce 2mole (2×6.02×10^23 molecules) of H2O= 1.2×20^24 molcules of water.
NB: 1 mole of H2O contains 6.02×10^23 molecules of H2O
Answer:
The volume of the sample is 17.4L
Explanation:
The reaction that occurs requires the same amount of CO and NO. As the moles added of both reactants are the same you don't have any limiting reactant. The only thing we need is the reaction where 4 moles of gases (2mol CO + 2mol NO) produce 3 moles of gases (2mol CO2 + 1mol N2). The moles produced are:
0.1800mol + 0.1800mol reactants =
0.3600mol reactant * (3mol products / 4mol reactants) = 0.2700 moles products.
Using Avogadro's law (States the moles of a gas are directly proportional to its pressure under constant temperature and pressure) we can find the volume of the products:
V1n2 = V2n1
<em>Where V is volume and n moles of 1, initial state and 2, final state of the gas</em>
Replacing:
V1 = 23.2L
n2 = 0.2700 moles
V2 = ??
n1 = 0.3600 moles
23.2L*0.2700mol = V2*0.3600moles
17.4L = V2
<h3>The volume of the sample is 17.4L</h3>
If you look at AIF3 and AICI3, the F ion is smaller than a CI ion. that’s why AICI3 will make a covalent bond while AIF3 will make a ionic bond. explanation: AICI3 doesn’t have a complete transfer of electrons between the metal and the non-metal.