Answer:
Environment refers to everything that surrounds an individual and interacts between them. The factors that control the environment can be biotic and abiotic.
Humans have greatly affected the environment. Some of the ways in which the environment is affected by humans are as follows-
(1) Humans have constructed industries and factories that have released a huge amount of toxic gases into the atmosphere.
(2) These harmful gases have increased the earth's global temperature. As a result of which the global warming effect has increased.
(3) The waste materials eliminated from these industries mix with the rivers and streams and pollute the water. It degrades water quality.
(4) The fossil fuels are exhausted at a very high rate.
(5) The spilling of the oils in the oceans has affected the marine species drastically.
(6) Due to the extensive mining at different places, soil fertility has decreased considerably.
(7) Cutting down trees for settlement purposes and other infrastructures.
Answer:
The standard enthalpy of combustion of solid urea ((CO(NH2)2) is -632 kJ mol-1 at 298 K and its standard molar entropy is 104.60 J K-1 mol-1
Explanation:
You will need a periodic table to help you answer this problem. The atomic numbers are arrange from lowest to highest in the periodic table. You can locate element number 55 to be Cesium with an atomic weight of 132.905 amu. So, you start from element 56. The following elements are:
56 Barium 137.328 amu
57 Lanthanium 138.905 amu
58 Cerium 140.116 amu
59 <span>Praseodymium 140.908 amu
60 Neodymium 144.243 amu
Neodymium is already greater than 144 amu. Therefore, these elements only include Barium, Lanthanium, Cerium and Praseodymium.</span>
To get the answer you use the Law of Raoult.
Raoult's law states that the decrease of the vapor pressure of a liquid is proportional to the molar fraction of the solute.
ΔP = Pa * Xa
Here Pa = 0.038 atm
And Xa = N a / (Na + Nb), where Na is number of moles of A and Nb is number of moles of b
Na = mass of urea / molar mass of urea = 60 g / (molar mass of CH4N2O)
molar mass of CH4N2O = 12 g/mol + 4*1g/mol + 2*14 g/mol + 16 g/mol = 60 g/mol
Na = 60 g / 60 g/mol = 1 mol
Nb = mass of water / molar mass of water = 180g / 18g/mol = 10 mol
Xa = 1 mol / (10 mol + 1 mol) = 1/11 =0.09091
ΔP = Pb * Xa = 0.038 atm * 0.09091 = 0.0035 atm
Then, the final vapor pressure of water is Pb - ΔP = 0.038atm - 0.0035atm = 0.035 atm.
Answer: 0.035 atm
Explanation:
Here's an oxidation chart to help
..................