Answer:
In the given chemical reaction:
Species Oxidized: I⁻
Species Reduced: Fe³⁺
Oxidizing agent: Fe³⁺
Reducing agent: I⁻
As the reaction proceeds, electrons are transferred from I⁻ to Fe³⁺
Explanation:
Redox reaction is a chemical reaction involving the simultaneous movement of electrons thereby causing oxidation of one species and reduction of the other species.
The chemical species that <u><em>gets reduced by gaining electrons </em></u><u>is called an </u><u><em>oxidizing agent</em></u>. Whereas, the chemical species that <u><em>gets oxidized by losing electrons </em></u><u>is called a </u><u><em>reducing agent</em></u><u>.</u>
Given redox reaction: 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂
<u>Oxidation half-reaction</u>: 2 I⁻ + → I₂ + 2 e⁻ ....(1)
<u>Reduction half-reaction</u>: [ Fe³⁺ + 1 e⁻ → Fe²⁺ ] × 2
⇒ 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺ ....(2)
In the given redox reaction, <u>Fe³⁺ (oxidation state +3) accepts electrons and gets reduced to Fe²⁺ (oxidation state +2) and I⁻ (oxidation state -1) loses electrons and gets oxidized to I₂ (oxidation state 0).</u>
<u>Therefore, Fe³⁺ is the oxidizing agent and I⁻ is the reducing agent and the electrons are transferred from I⁻ to Fe³⁺.</u>
The reaction is not balanced
<h3>Further explanation</h3>
Given
Reaction
2Fe(s)+3O₂(g)⇒2Fe₂O₃(s)
Required
The number of atoms
Solution
In a balanced chemical equation, the number of atoms in the compound that reacts (the reactants and products) will have the same number
Reactants : Fe(s)+O₂(g)
Fe = 2 atoms
O = 3 x 2 = 6 atoms
Products : Fe₂O₃(s)
Fe = 2 x 2 = 4 atoms
O = 2 x 3 = 6 atoms
The reaction is not balanced because the number of Fe atoms is not the same
The balanced reaction should be:
4Fe(s)+3O₂(g)⇒2Fe₂O₃(s)
The new volume : 21.85 ml
<h3>Further explanation</h3>
Given
V1=25,0 ml
P1=725 mmHg
T1=298K is converted to
T2=273'K
P2=760 mmHg atm
Required
V2
Solution
Combined gas law :

Input the value :
V2=(P1.V1.T2)/(P2.T1)
V2=(725 x 25 ml x 273)/(760 x 298)
V2=21.85 ml
Land will warm faster/quicker