Answer:
x₁ > x₂
Step-by-step explanation:
Both actions imply a parable trajectories, since both are projectile shot cases.
Let´s call x₁ maximum distance in the first case
The maximum height is just in the middle of the curve, therefore x₁ the maximum horizontal distance is equal to 60 feet.
In the second case, the parable curve is modeled by:
y = x₂*( 0.08 - 0.002x₂) or y = 0.08*x₂ - 0.002*x₂²
A second degree equation, solving for x₂ and dismissing the value x₂ = 0
we get:
y = 0 ⇒ x₂*( 0.08 - 0.002x₂) = 0 x₂ = 0
And 0,08 - 0.002*x₂ = 0
- 0.002*x₂ = - 0.08
x₂ = 0.08/0.002
x₂ = 40 f
Then x₁ > x₂
Answer:
195
Step-by-step explanation:
No; we have . Substituting these into the DE gives
which reduces to , true only for .
Answer:
The height of the hot air balloon is 1514.54 feet approximately.
Step-by-step explanation:
Consider the provided information.
The angle of elevation from the top of a 95-foot tall building to a hot air balloon in the sky is 76. If the horizontal distance between the building and the hot air balloon is 354 feet, find the height of the hot air balloon
The figure is shown below:
Let the height of the balloon is AD, the height of the building is BC.
Draw a line BE parallel to CD.
Therefore, AD=x+95, BC=95 and BE=CD=354 ft
Now in triangle .
The height air balloon is 1419.54+95
=1514.54 ft
Hence, the height of the hot air balloon is 1514.54 feet approximately.