Answer:
i don't know what exactly your question is but i believe this is the answer if you are trying to find f. f= -1/7g+5/7
Step-by-step explanation:
Answers:
The z scores are approximately:
- Care of Magical Creatures: z = 0.333
- Defense Against the Dark Arts: z = 0.583
- Transfiguration: z = -0.263
- Potions: z = -0.533
From those scores, we can say:
- Best grade = Defense Against the Dark Arts
- Worst grade = Potions
=====================================================
Further Explanation:
We'll need to convert each given score to a corresponding standardized z score.
The formula to use is
z = (x - mu)/sigma
where,
- x = given grade for each class
- mu = mean
- sigma = standard deviation
Let's find the z score for the Care of Magical Creatures class
z = (x - mu)/sigma
z = (3.80 - 3.75)/(0.15)
z = 0.333 approximately
Repeat this process for the Defense Against the Dark Arts score.
z = (x - mu)/sigma
z = (3.60 - 3.25)/(0.60)
z = 0.583 approximately
And for the Transfiguration class as well
z = (x - mu)/sigma
z = (3.10 - 3.20)/(0.38)
z = -0.263 approximately
The negative z score means his grade below the average, whereas earlier the other scores were above the average since he got positive z scores.
Now do the final class (Potions) to get this z score
z = (x - mu)/sigma
z = (2.50 - 2.90)/(0.75)
z = -0.533 approximately
This grade is below average as well.
----------------------------
To summarize, we have these z scores
- Care of Magical Creatures: z = 0.333
- Defense Against the Dark Arts: z = 0.583
- Transfiguration: z = -0.263
- Potions: z = -0.533
Harry did his best in Defense Against the Dark Arts because the z score of 0.583 (approximate) is the largest of the four z scores. On the other hand, his worst grade is in Potions because -0.533 is the lowest z score.
Answer:
A sample of 1077 is required.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is of:

42% of freshmen do not visit their counselors regularly.
This means that 
98% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
How large of a sample size is required?
A sample size of n is required, and n is found when M = 0.035. So






Rounding up:
A sample of 1077 is required.
It’s a bit blurry retake the picture
The measurement of <ABC is 50 degrees