Answer:
The probability is 0.971032
Step-by-step explanation:
The variable that says the number of components that fail during the useful life of the product follows a binomial distribution.
The Binomial distribution apply when we have n identical and independent events with a probability p of success and a probability 1-p of not success. Then, the probability that x of the n events are success is given by:

In this case, we have 2000 electronics components with a probability 0.005 of fail during the useful life of the product and a probability 0.995 that each component operates without failure during the useful life of the product. Then, the probability that x components of the 2000 fail is:
(eq. 1)
So, the probability that 5 or more of the original 2000 components fail during the useful life of the product is:
P(x ≥ 5) = P(5) + P(6) + ... + P(1999) + P(2000)
We can also calculated that as:
P(x ≥ 5) = 1 - P(x ≤ 4)
Where P(x ≤ 4) = P(0) + P(1) + P(2) + P(3) + P(4)
Then, if we calculate every probability using eq. 1, we get:
P(x ≤ 4) = 0.000044 + 0.000445 + 0.002235 + 0.007479 + 0.018765
P(x ≤ 4) = 0.028968
Finally, P(x ≥ 5) is:
P(x ≥ 5) = 1 - 0.028968
P(x ≥ 5) = 0.971032
Answer:
The absolute number of a number a is written as
|a|
And represents the distance between a and 0 on a number line.
An absolute value equation is an equation that contains an absolute value expression. The equation
|x|=a
Has two solutions x = a and x = -a because both numbers are at the distance a from 0.
To solve an absolute value equation as
|x+7|=14
You begin by making it into two separate equations and then solving them separately.
x+7=14
x+7−7=14−7
x=7
or
x+7=−14
x+7−7=−14−7
x=−21
An absolute value equation has no solution if the absolute value expression equals a negative number since an absolute value can never be negative.
The inequality
|x|<2
Represents the distance between x and 0 that is less than 2
Whereas the inequality
|x|>2
Represents the distance between x and 0 that is greater than 2
You can write an absolute value inequality as a compound inequality.
−2<x<2
This holds true for all absolute value inequalities.
|ax+b|<c,wherec>0
=−c<ax+b<c
|ax+b|>c,wherec>0
=ax+b<−corax+b>c
You can replace > above with ≥ and < with ≤.
When solving an absolute value inequality it's necessary to first isolate the absolute value expression on one side of the inequality before solving the inequality.
Step-by-step explanation:
Hope this helps :)
Answer:
A
Step-by-step explanation:
Answer:
a d and e
Step-by-step explanation:
none
<span>3.4 = –13.6 + (–3.4c) + 1.7c
</span><span>3.4 = –13.6 –3.4c + 1.7c
17 = -1.7c
c = -10</span>