1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
7

Which of the following best shows how the internet affects the economic

Mathematics
1 answer:
weqwewe [10]3 years ago
6 0

Answer:The answer is B.  I just did it. good luck!

Step-by-step explanation:

You might be interested in
What is 28.26 rounded to the nearest hundreth
In-s [12.5K]
28.26 rounded to the nearest hundredth is 28.3
5 0
3 years ago
Write an equation for:<br> the sum of three times 'y' and 11 is 32
nadya68 [22]

<em>Hey</em><em>!</em><em>!</em>

<em>Ques</em><em>tion</em><em>:</em><em> </em><em>The</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>three</em><em> </em><em>times</em><em> </em><em>'y'</em><em> </em><em>and</em><em> </em><em>1</em><em>1</em><em> </em><em>is</em><em> </em><em>3</em><em>2</em>

<em>Answer</em><em>:</em><em> </em><em>3</em><em>y</em><em>+</em><em>1</em><em>1</em><em>=</em><em>3</em><em>2</em>

<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>

<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>

8 0
3 years ago
Read 2 more answers
7. By using binomial expansion show that the value of (1.01)^12 exceed the value of (1.02)^6 by 0.0007 correct to four decimal p
BlackZzzverrR [31]

Binomial expansion is used to factor expressions that can be expressed as the power of the sum of two numbers.

The proof that (1.01)^12 exceeds (1.02)^6 by 0.0007 is\mathbf{(1.01)^{12} - (1.02)^6 \approx 0.0007 }

The expressions are given as:

\mathbf{(1.01)^{12}\ and\ (1.02)^6}

A binomial expression is represented as:

\mathbf{(a + b)^n = \sum\limits^n_{k=0}^nC_k a^{n - k}b^k}

Express 1.01 as 1 + 0.01

So, we have:

\mathbf{(1.01)^{12} = (1 + 0.01)^{12}}

Apply the above formula

\mathbf{(1.01)^{12} = ^{12}C_0 \times 1^{12 - 0} \times 0.01^0 + .........  .......... +  ^{12}C_{12} \times 1^{12 - 12} \times 0.01^{12} }}

\mathbf{(1.01)^{12} = 1 \times 1 \times 1 + .........  .......... +  1 \times 1 \times 10^{-24} }}

\mathbf{(1.01)^{12} = 1  + .........  .......... +  10^{-24} }}

This gives

\mathbf{(1.01)^{12} = 1.1268\ (approximated)}

Similarly,

Express 1.02 as 1 + 0.02

So, we have:

\mathbf{(1.02)^6 = (1 + 0.02)^6}

Apply \mathbf{(a + b)^n = \sum\limits^n_{k=0}^nC_k a^{n - k}b^k}

\mathbf{(1.02)^6 = ^6C_0 \times 1^{6 - 0} \times 0.02^0 +  ^6C_1 \times 1^{6 - 1} \times 0.02^1 +.............. + ^6C_6 \times 1^{6 - 6} \times 0.02^6 }\mathbf{(1.02)^6 = 1 \times 1 \times 1 +  6 \times 1 \times 0.02 +.............. + 1 \times 1 \times 6.4 \times 10^{-11} }

\mathbf{(1.02)^6 = 1 +  0.12 +.............. + 6.4 \times 10^{-11} }

This gives

\mathbf{(1.02)^6 = 1.1261\ (approximated) }

Calculate the difference as follows:

\mathbf{(1.01)^{12} - (1.02)^6 \approx 1.1268 - 1.1261 }

\mathbf{(1.01)^{12} - (1.02)^6 \approx 0.0007 }

The above equation means that:

(1.01)^12 exceed the value of (1.02)^6 by 0.0007

Read more about binomial expansions at:

brainly.com/question/9554282

7 0
3 years ago
Answer both questions for seventeen points and i’ll name you brainliest!! Type the correct answer in each box. Use numerals inst
Elden [556K]

\bf -2(bx-5)=16\implies bx-5=\cfrac{16}{-2}\implies bx-5=-8\implies bx=-8+5 \\\\\\ bx=-3\implies \boxed{x=\cfrac{-3}{b}} \\\\[-0.35em] ~\dotfill\\\\ b=3\qquad \qquad x=\cfrac{-3}{\underset{b}{3}}\implies \boxed{b=-1}

4 0
3 years ago
Decimal Place Value write the word form and decimal for each shaded part.
Solnce55 [7]
The answer is Four tenths
3 0
4 years ago
Read 2 more answers
Other questions:
  • Help me please ASAP
    15·2 answers
  • Which is the best estimate of the residual when x = 3?<br><br> –0.5 <br> –1.5 <br> 1.5 <br> 0.5
    14·1 answer
  • HELP PLEASE!!! 10 PTS BRAINLIEST!!!
    7·1 answer
  • If a 40​-foot tree casts a 12​-foot ​shadow, find the length of the shadow cast by a 26 dash foot tree?
    11·1 answer
  • Suppose that the function LaTeX: f(x) f ( x ) is shifted horizontally to the right by LaTeX: a a , reflected across the LaTeX: x
    15·1 answer
  • What is the value of x
    12·1 answer
  • Increase £120 by 40%
    8·1 answer
  • Solve 64x = 16x−1.<br><br> x = −2<br> x = −1<br> x = negative 1 over 4<br> x = negative 1 over 3
    7·1 answer
  • Solve for :<br> 4x + 1889<br> 6x + 216
    13·1 answer
  • Two major cities each have a population of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!